Siberian Mathematical Journal

, Volume 23, Issue 3, pp 358–364 | Cite as

Continuity of universally measureble linear maps

  • M. P. Kats


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. Schwartz, “Sur la théorème du graphe fermé,” C. R. Acad. Sci.,263, No. 18, 602–603 (1968).Google Scholar
  2. 2.
    M. De Wilde, Reseaux dans les espaces lineaires a semi-normes. These d'Agregation de I'Enseignement superieur, S. n., Liege (1969).Google Scholar
  3. 3.
    A. Martineau, “Sur les theoremes de S. Banach et L. Schwartz concernant le graphe ferme,” Stud. Math.,30, No. 1, 43–51 (1968).Google Scholar
  4. 4.
    O. G. Smolyanov and A. V. Uglanov, “Every Hilbert subspace of the Wiener space has measure zero,” Mat. Zametki,14, No. 3, 369–374 (1973).Google Scholar
  5. 5.
    A. V. Skorohod, Integration in Hilbert Space, Springer-Verlag (1974).Google Scholar
  6. 6.
    G. E. Shilov and Fan Dyk Tin, Integral, Measure, and Derivative in Linear Spaces [in Russian], Nauka, Moscow (1967).Google Scholar
  7. 7.
    H.-H. Kuo, Gaussian Measures in Banach Spaces, Lect. Notes Math.,463, Springer-Verlag (1975).Google Scholar
  8. 8.
    J. Neveu, Bases Mathematique du Calcul des Probabilites, Masson, Paris (1964).Google Scholar
  9. 9.
    W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).Google Scholar
  10. 10.
    P. A. Meyer, Probability and Potentials, Blaisdell, Waltham, Mass. (1966).Google Scholar
  11. 11.
    V. Ya. Arsenin and A. A. Lyapunov, “A-sets,” Usp. Mat. Nauk,5, No. 5, 45–108 (1950).Google Scholar
  12. 12.
    P. R. Halmos, Measure Theory, Springer-Verlag (1974).Google Scholar
  13. 13.
    H. H. Schaefer, Topological Vector Spaces, Springer-Verlag (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • M. P. Kats

There are no affiliations available

Personalised recommendations