Siberian Mathematical Journal

, Volume 23, Issue 3, pp 316–331 | Cite as

Multidimensional limit theorems of the theory of best polynomial approximations

  • M. I. Ganzburg
Article

Keywords

Limit Theorem Polynomial Approximation Good Polynomial Approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. N. Bernshtein, “On the best approximation of continuous functions on the whole real axis by means of functions of given degree,” in: Collected Works [in Russian], Vol. II, Izd. Akad. Nauk SSSR, Moscow (1954), pp. 390–395.Google Scholar
  2. 2.
    S. N. Bernshtein, “Limit laws of the theory of best approximations,” in: Collected Works [in Russian], Vol. II, Izd. Akad. Nauk SSSR, Moscow (1954), pp. 416–420.Google Scholar
  3. 3.
    S. N. Bernshtein, “New derivation and generalization of certain formulas of best approximation,” in: Collected Works [in Russian], Vol. II, Izd. Akad. Nauk SSSR, Moscow (1954), pp. 402–404.Google Scholar
  4. 4.
    S. M. Nikol'skii, “On the best unproximation by p0lynomials of the functions that satisfy the Lipschitz condition,” Izv. Akad. Nauk SSSR, Ser. Mat.,10, 295–318 (1946).Google Scholar
  5. 5.
    S. N. Bernshtein, “Generalization of a result of S. M. Nikol'skii,” in: Collected Works [in Russian], Vol. II, Izd. Akad. Nauk SSSR, Moscow (1954), pp. 399–401.Google Scholar
  6. 6.
    N. P. Korneichuk, “On the best uniform approximation on certain classes of continous functions,” Dokl. Akad. Nauk SSSR,140, No. 4, 748–751 (1961).Google Scholar
  7. 7.
    M. I. Ganzburg, “A multidimensional limit theorem of the theory of best polynomial approximations,” Dokl. Akad. Nauk SSSR,242, No. 1, 17–20 (1978).Google Scholar
  8. 8.
    E. M. Stein and G. Weiss, Introduction to Harmonic Analysis on Euclidean Spaces, Princeton Univ. Press (1971).Google Scholar
  9. 9.
    L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables [in Russian], Nauka, Moscow (1971).Google Scholar
  10. 10.
    M. Placherel and G. Polya, “Fonctions entieres et integrales Fourier multiples,” Comment. Math. Helv.,9, 224–248 (1937).Google Scholar
  11. 11.
    W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).Google Scholar
  12. 12.
    S. M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems [in Russian], Nauka, Moscow (1969).Google Scholar
  13. 13.
    N. I. Akhiezer, Theory of Approximation, Ungar (1956).Google Scholar
  14. 14.
    S. N. Bernshtein, “On the best approximation of continuous functions on the whole real axis by means of entire functions of a given degree. III,” in: Collected Works [in Russian], Vol. II, Izd.. Akad. Nauk SSSR, Moscow (1954), pp. 378–383.Google Scholar
  15. 15.
    B. Grunbaum, “Measures of symmetry for convex sets,” in: Convexity, Proc. Symp. Pure Math., Vol. 7, American Mathematical Society, Providence (1963), pp. 233–270; “Borsuk's problem and related question,” ibid. in: Convexity, Proc. Symp. Pure Math., Vol. 7, American Mathematical Society, Providence (1963), pp. 271–284.Google Scholar
  16. 16.
    A. F. Timan, Theory of Approximation of Functions of a Real Variable [in Russian], Fizmatigiz, Moscow (1960).Google Scholar
  17. 17.
    A. Erdelyi et al., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).Google Scholar
  18. 18.
    R. A. Raitsin, “S. N. Bernshtein's limit theorem for the best approximations in the mean and some of its applications,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 81–86 (1968).Google Scholar
  19. 19.
    Yu. A. Brudnyi, “Approximation of functions given in a convex manifold,” Dokl. Akad. Nauk SSSR,195, No. 5, 1005–1009 (1970).Google Scholar
  20. 20.
    L. Danszer, B. Grünbaum, and V. Klee, The Helley Theorem and Its Applications [Russian translation], Mir, Moscow (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • M. I. Ganzburg

There are no affiliations available

Personalised recommendations