Advertisement

Siberian Mathematical Journal

, Volume 23, Issue 3, pp 297–300 | Cite as

Free product of linearly orderable Lie algebras

  • S. A. Agalakov
  • A. S. Shtern
Article
  • 13 Downloads

Keywords

Free Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. M. Kopytov, “Ordering Lie algebras,” Algebra Logika,11, No. 3, 295–325 (1972).Google Scholar
  2. 2.
    L. Fuchs, Partially Ordered Algebraic Systems [Russian translation], Mir, Moscow (1965).Google Scholar
  3. 3.
    N. Ya. Medvedev, “On completely orderable Lie algebras,” Sib. Mat. Zh.,18, No. 2, 469–471 (1977).Google Scholar
  4. 4.
    Dniester Notebook [in Russian], 2nd ed., Mathematics Institute, Siberian Branch, Academy of Sciences, Novosibirsk (1976).Google Scholar
  5. 5.
    S. A. Agalakov and A. S. Shtern, “Free products of linearly orderable Lie algebras,” in: 15th All-Union Algebraic Conference. Proceedings [in Russian], Vol. 1, Krasnoyarsk (1979), p. 3.Google Scholar
  6. 6.
    G. P. Kukin, “On the Cartesian subalgebra of the free Lie sum of Lie algebras,” Algebra Logika,9, No. 6, 701–714 (1970).Google Scholar
  7. 7.
    D. I. Éidel'kind, “Verbal products of Magnus groups,” Mat. Sb.,85, 504–526 (1971).Google Scholar
  8. 8.
    G. P. Kukin, “Subalgebras of the free Lie sum of Lie algebras with amalgamated subalgebra,” Algebra Logika,11, No. 1, 59–86 (1972).Google Scholar
  9. 9.
    A. I. Shirshov, “On free Lie rings,” Mat. sb.,45, No. 2, 113–122 (1958).Google Scholar
  10. 10.
    P. Cohn, Universal Algebra [Russian translation], Mir, Moscow (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • S. A. Agalakov
  • A. S. Shtern

There are no affiliations available

Personalised recommendations