Skip to main content
Log in

Magnetite solubility and phase stability in alkaline media at elevated temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A platinum-lined flowing autocláve facility was used to investigate the solubility behavior of magnetite (Fe3O4) in alkaline sodium phosphate and ammonium hydroxide solutions between 21 and 288°C. Measured iron solubilities were interpreted via a Fe(II)/Fe(III) ion hydroxo-, phosphato-, and ammino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. A total of 14 iron ion species were fitted. Complexing equilibria are reported for 8 new species: Fe(OH)(HPO4), Fe(OH)2(HPO4)2−, Fe(OH)3(HPO4)2−, Fe(OH)(NH3)+, Fe(OH)2(PO4)3−, Fe(OH)4(HPO4)3−, Fe(OH)2(H2PO4), and Fe(OH)3(H2PO4)3−. At elevated temperatures, hydrolysis and phosphato complexing tended to stabilize Fe(III) relative to Fe(II), as evidenced by free energy changes fitted to the oxidation reactions.

$$\begin{gathered} Fe(OH)_3^ - + H_2 O_ \leftarrow ^ \to Fe(OH)_4^ - + (1/2)H_2 (g) \hfill \\ Fe(OH)_2^{} (HPO_4 )^{2 - } + H_2 O_ \leftarrow ^ \to Fe(OH)_3 (HPO_4 )^{2 - } + (1/2)H_2 (g) \hfill \\ \end{gathered}$$

For temperatures below 83°C and for a dissolved hydrogen concentration of 234 μmol-kg−1, the activity of ferrous iron in aqueous solution is controlled by a hydrous Fe(II) oxide solid phase rather than magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Sweeton and C. F. Baes,J. Chem. Thermodyn. 2, 479 (1970).

    Google Scholar 

  2. P. R. Tremaine and J. C. LeBlanc,J. Solution Chem. 9, 415 (1980).

    Google Scholar 

  3. S. E. Ziemniak, M. E. Jones and K. E. S. Combs,J. Solution Chem. 18, 1133 (1989).

    Google Scholar 

  4. S. E. Ziemniak and E. P. Opalka, inProc. Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, R. E. Gold and E. P. Simonen, eds., (The Minerals, Metals & Materials Society, Warrendale, PA, 1993), p. 929.

    Google Scholar 

  5. E. C. Potter and G. M. W. Mann, inProceedings of the First International Congress on Metallic Corrosion, (Butterworths, London, 1962), p. 417.

    Google Scholar 

  6. E. M. Field and D. R. Holmes,Corros. Sci. 5 361 (1965).

    Google Scholar 

  7. Private communication with J. Chera, GE Corporate R&D Center.

  8. N. S. McIntyre and D. G. Zetaruk,Anal. Chem. 49, 1521 (1977).

    Google Scholar 

  9. J. O. Nriagu,Geochim. Cosmochim. Acta. 37, 2357 (1972).

    Google Scholar 

  10. H. Galal-Gorchev and W. Stumm,J. Inorg. Nucl. Chem. 25, 567 (1963).

    Google Scholar 

  11. K. B. Yatsimirskii,J. Gen. Chem. USSR 24, 1485 (1954).

    Google Scholar 

  12. F. H. Sweeton, R. E. Mesmer, and C. F. Baes,J. Solution Chem. 3, 191 (1974).

    Google Scholar 

  13. B. F. Hitch and R. E. Mesmer,J. Solution Chem. 5, 667 (1976).

    Google Scholar 

  14. R. E. Mesmer and C. F. Baes,J. Solution Chem. 3, 307 (1974).

    Google Scholar 

  15. N. C. Treloar,Central Electricity Research Laboratory Report RD/L/N 270/73 (1973). (See WAPD-TM-1302, March 1979).

  16. L. O. Gilpatrick and H. H. Stone,Oak Ridge National Laboratory Reports ORNL-3127 (1961) and ORNL-3262 (1962).

  17. W. L. Marshall, R. Slusher, and E. V. Jones,J. Chem. Eng. Data 9, 187 (1964).

    Google Scholar 

  18. W. L. Marshall and E. V. Jones,J. Phys. Chem. 70, 4028 (1966).

    Google Scholar 

  19. D. L. Marquardt,J. Soc. Indust. Appl. Math. 2, 431 (1963).

    Google Scholar 

  20. C. F. Baes and R. E. Mesmer,The Hydrolysis of Cations Wiley-Interscience, New York, (1976).

    Google Scholar 

  21. K. H. Gayer and A. B. Garrett,J. Amer. Chem. Soc. 72, 3921 (1950).

    Google Scholar 

  22. J. W. Larson, P. Cerutti, H. K. Garber and L. G. Hepler,J. Phys. Chem. 72, 2902 (1968).

    Google Scholar 

  23. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, “The NBS Tables of Chemical Thermodynamic Properties”,J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).

    Google Scholar 

  24. M. M. Osman, T. M. Salem, and N. J. L. Gayed,Inorg. Chimica Acta 58, 233 (1981).

    Google Scholar 

  25. G. K. Johnson and J. E. Bauman,Inorg. Chem. 17, 2774 (1978).

    Google Scholar 

  26. I. Barin,Thermochemical Data of Pure Substances, (VCH Verlagsgesellschaft, Weinheim, 1989).

    Google Scholar 

  27. M. H. Abraham and Y. Marcus,J. Chem. Soc., Faraday Trans. 1,82, 3255 (1986).

    Google Scholar 

  28. R. E. Mesmer,Inorg. Chem. 10, 857 (1971).

    Google Scholar 

  29. G. A. Kanert, G. W. Gray, and W. G. Baldwin,Report AECL-5528 (Atomic Energy of Canada, Ottawa, 1976).

    Google Scholar 

  30. M. A. Styrikovich, O. I. Martynova, I. F. Kobyakov, V. L. Men'shikova, and M. I. Reznikov,Therm. Eng. 19, 127 (1972).

    Google Scholar 

  31. I. Lambert, J. Montel, P. Beslu, and A. Lalet, inThermodynamics of Nuclear Materials 1979, (International Atomic Energy Agency, Vienna, 1980) p. 89.

    Google Scholar 

  32. I. Lambert, J. Montel, and P. Courvoisier, inProc. Second International Conference on Water Chemistry of Nuclear Reactor Systems, (British Nuclear Energy Society, London, 1980), p. 31.

    Google Scholar 

  33. S. C. Lahiri,J. Ind. Chem. Soc. 42, 715 (1965).

    Google Scholar 

  34. J. O. Nriagu,Amer. J. Sci. 272, 476 (1972).

    Google Scholar 

  35. R. F. Schmalz,J. Geophys. Res.,64, 575 (1959).

    Google Scholar 

  36. C. M. Criss and J. W. Cobble,J. Amer. Chem. Soc. 86, 5390 (1964).

    Google Scholar 

  37. J. W. Larson, K. G. Zeeb, and L. G. Hepler,Can. J. Chem. 60, 2141 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziemniak, S.E., Jones, M.E. & Combs, K.E.S. Magnetite solubility and phase stability in alkaline media at elevated temperatures. J Solution Chem 24, 837–877 (1995). https://doi.org/10.1007/BF00973442

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973442

Key Words

Navigation