Skip to main content
Log in

Are astroglial cells involved in morphine tolerance?

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Morphine gives rise to a cascade of events in the nervous system affecting, among others, neurotransmitter metabolism. Tolerance develops for various effects shortly after administration of the drug. Also, physical dependence develops and can be demonstrated by precipitation of withdrawal reactions. Biochemical events in nervous tissue have been extensively studied during morphine treatment. This overview will focus upon brain protein metabolism since macromolecular events might be of importance for development of long-term effects, such as tolerance and physical dependence. Both dose-and time-dependent changes in brain protein synthesis and the syntheses of specific proteins have been demonstrated after morphine treatment, although methodological considerations are important. Different experimental models (animal and tissue culture models) are presented. It might be interesting to note that astroglial protein synthesis and the secretion of proteins to the extracellular medium are both changed after morphine treatment, these having been evaluated in astroglial enriched primary cultures and in brain tissue slices. The possibility is suggested that proteins released from astroglial cells participate in the communication with other cells, including via synaptic regions, and that such communication might be of significance in modifying the synaptic membranes during morphine intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Advokat, C. 1981. Analgesic tolerance produced by morphine pellets is facilitated by analgesic testing. Pharmac. Biochem. Behav. 14:133–137.

    Google Scholar 

  2. Andrade, R., Van Der Maelen, C. P., and Aghajanian, G. K. 1983. Morphine tolerance and dependence in the locus coeruleus: single cell studies in brain slices. Eur. J. Pharmacol. 91:161–169.

    PubMed  Google Scholar 

  3. Arenander, A. T., and De Vellis, J. 1982. Glial-released proteins in neural intercellular communication: molecular mapping, modulation, and influence on neuronal differentiation, Pages 243–269,in Proteins in the Nervous System: Structure and function. Alan R. Liss, Inc., 150 Fifth Avenue, N.Y., N.Y. 10011.

    Google Scholar 

  4. Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C. 1960. Comparative anatomy of the nervous system of vertebrates including man. Hafner, New York.

    Google Scholar 

  5. Badawy, A. A.-B., Evans, C. M., and Evans, M. 1982. Production of tolerance and physical dependence in the rat by simple administration of morphine in drinking water. Br. J. Pharmacol. 75:485–491.

    PubMed  Google Scholar 

  6. Bläsig, J., Herz, A., Reinhold, K., and Zieglgänsberger, S. 1973. Development of physical dependence on morphine in respect to time and dosage and quantification of the precipitated withdrawal syndrome in rats. Psychopharmacol. (Berl.) 33:19–38.

    Google Scholar 

  7. Bowman, C. L., and Kimelberg, H. K. 1984. Excitatory amino acids directly depolarize rat brain astrocytes in primary culture. Nature 311:656–659.

    PubMed  Google Scholar 

  8. Bunn, S. J., Hanley, M. R., and Wilkin, G. P. 1985. Evidence for a kappa-oploid receptor on pituitary astrocytes: an autoradiographic study. Neurosci. Lett. 55:317–323.

    PubMed  Google Scholar 

  9. Cappell, H., and LeBlanc, A. E. 1971. Some factors controlling oral morphine intake in rats. Psychopharmacol. (Berl.) 21:192–201.

    Google Scholar 

  10. Castles, T. R., Campbell, S., Gouge, R., and Lee, C. C. 1972. Nucleic acid synthesis in brains from rats tolerant to morphine analgesia. J. Pharmacol. Exp. Ther. 181:399–406.

    PubMed  Google Scholar 

  11. Chesselet, M. F., Chéramy, A., Reisine, T. D., and Glowinski, J. 1981. Morphine and delta-opiate agonists locally stimulate in vivo dopamine release in cat caudate nucleus. Nature (Lond.) 291:320–322.

    Google Scholar 

  12. Cicero, T. J., and Meyer, E. R. 1973. Morphine pellet implantation in rats: quantitative assessment of tolerance and dependence. J. Pharmacol. Exp. Ther. 184:404–408.

    PubMed  Google Scholar 

  13. Clouet, D. H. (ed.) 1971. Protein and nucleic acid metabolism. Pages 216–228,in Narcotic drugs, biochemical pharmacology. Plenum, New York, London.

    Google Scholar 

  14. Clouet, D. H. 1977. Biochemical effects of the use of narcotic analgesic drugs. Pages 63–70,in Roizin, I., Shiraki, H., and Gréevié, N. (eds) Neurotoxicology, Raven Press, New York.

    Google Scholar 

  15. Clouet, D. H., and Iwatsubo, K. 1975. Mechanisms of tolerance to and dependence on narcotic analgesic drugs. Ann. Rev. Pharmac. 15:49–71.

    Google Scholar 

  16. Clouet, D. H., and Ratner, M. 1967. The effect of the administration of morphine on the incorporation of14C-leucine into the proteins of rat brain in vivo. Brain Research 4:33–43.

    PubMed  Google Scholar 

  17. Clouet, D. H., and Ratner, M. 1968. The effect of morphine administration on the incorporation of14C-leucine into protein in cell-free systems from rat brain and liver J. Neurochem. 15:17–23.

    PubMed  Google Scholar 

  18. Clouet, D. H., and Ratner, M. (1979) The effect of morphine tolerance on the incorporation of3H-leucine into proteins of rat synaptic membranes. J. Neurosci. Res. 4:93–103.

    PubMed  Google Scholar 

  19. Cochin, J., and Kornetsky, C. 1964. Development and loss of tolerance to morphine in the rat after single and multiple injections. J. Pharmacol. Exp. Ther. 145:1–10.

    PubMed  Google Scholar 

  20. Cohen, M., Keats, A. S., Krivoy, W., and Ungar, G. 1963. Effect of actinomycin D on morphine tolerance. Proc. Soc. Exp. Biol. Med. 119:381–384.

    Google Scholar 

  21. Collier, H. O. J. 1966. Tolerance, physical dependence and receptors. A theory of the genesis of tolerance and physical dependence through drug-induced changed in the number of receptors. p. 171in Harper, N.J., and Simmonds, A. B. (eds.) Advances in drug research, Vol. 3. Academic Press, New York.

    Google Scholar 

  22. Collier, H. O. J. 1968. Supersensitivity and dependence. Nature (Lond.) 220:228–231.

    Google Scholar 

  23. Collier, H. O. J. (1978) Biochemical theories of opioid dependence: an analysis. Pages 374–385in Neuhoff, V. (ed.) Proceedings of the European Society for Neurochemistry, Vol. 1. Verlag Chemie, Weinheim-New York.

    Google Scholar 

  24. Collier, H. O. J. (1980) Cellular site of opiate dependence. Nature 283:625–629.

    PubMed  Google Scholar 

  25. Coombs, D. W., Saunders, R. L., Lachance, D., Savage, S., Ragnarsson, T. S., and Jensen, L. E. 1985. Intrathecal morphine tolerance: use of intrathecal clonidine, DADLE and intraventricular morphine. Anesthesiol. 62:358–363.

    Google Scholar 

  26. Cox B. M. 1973. Effects of inhibitors of protein synthesis in morphine tolerance and dependence. Pages 219–231in Kosterlitz, H. W., Collier, H. O. J., and Villarreal, J. E. (eds.) Agonist and antagonist actions of narcotic analgesic drugs. University Park Press, Baltimore.

    Google Scholar 

  27. Cox B. M., and Osman, O. H. 1970. Inhibition of the development of tolerance to morphine in rats by drugs which inhibit ribonucleic acid or protein synthesis. Br J Pharmacol. 38:157–170.

    PubMed  Google Scholar 

  28. Craves, F. B., Loh, H. H., and Meyerhoff, J. L. 1978. The effect of morphine tolerance and dependence on cell free protein synthesis. J. Neurochem. 31:1309–1316.

    PubMed  Google Scholar 

  29. Criswell, H. E., and Ridings, A. 1983. Intravenous selfadministration of morphine by naive mice. Pharmacol. Biochem. Behav. 18:467–470.

    Google Scholar 

  30. Dai, S., Hui, S. C. G., and Ogle, C. W. 1984. Morphine preference in rats previously morphine dependent. Pharmacol. Res. Commun. 16:495–511.

    PubMed  Google Scholar 

  31. Dole, V. P. 1970. Biochemistry of addiction. Ann. Rev. Biochem. 39:821–840.

    PubMed  Google Scholar 

  32. Ehrlich, Y. H., Bonnet, K. A., Davis, L. G., and Brunngraber E. G. 1978. Decreased phosphorylation of specific proteins in neostriatal membranes from rats after long-term narcotic exposure. Life Sci. 23:137–146.

    PubMed  Google Scholar 

  33. Eidelberg, E., and Barstow, C. A. 1971. Morphine tolerance and dependence induced by intraventricular injection. Science 174:74–76.

    PubMed  Google Scholar 

  34. Fenstermacher, J. D., Blasberg, R. A., and Patlak, C. S. 1981. Methods for quantifying the transport of drugs across brain barrier systems. Pharmac. Ther. 14:217–248.

    Google Scholar 

  35. Franklin, G. I., and Cox, B. M. 1972. Incorporation of amino acids into proteins of synaptosomal membranes during morphine treatment. J. Neurochem. 19:1821–1823.

    PubMed  Google Scholar 

  36. Fuentes, V. O., Hunt, W. B., and Crossland, J. 1978. The production of morphine tolerance and physical dependence by the oral route in the rat. Psychopharmacol. 59:65–69.

    Google Scholar 

  37. Galambos, R. 1961. A glia-neuronal theory of brain function. Proc. Natl. Acad. Sci. USA 47:129–136.

    PubMed  Google Scholar 

  38. Gellert, V. F., and Holtzman, S. G. 1978. Development and maintenance of morphine tolerance and dependence in the rat by scheduled access to morphine drinking solutions. J. Pharmacol. Exp. Ther. 205:536–546.

    PubMed  Google Scholar 

  39. Goldstein, A., and Goldstein, D. B. (1968) Theory of drug tolerance and physical dependence. Pages 265–267in Wikler, A. (Ed.) The additive states. Williams and Wilkins Company, Baltimore.

    Google Scholar 

  40. Hahn, D. L., and Goldstein, A. 1971. Amounts and turnover rates of brain proteins in morphine-tolerant mice. J. Neurochem. 18:1887–1893.

    PubMed  Google Scholar 

  41. Hallermayer, K., Harmening, C., and Hamprecht, B. 1981. Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice. J. Neurochem. 37:43–52.

    PubMed  Google Scholar 

  42. Hammond, M. D., Schneider, C., and Collier, H. O. J. 1976. Induction of opiate tolerance in isolated guinea-pig ileum and its modification by drugs. Pages 169–176in Kosterlitz, H. W. (ed.) Opiates and endogenous opioid peptides. Elsevier/North Holland. Amsterdam.

    Google Scholar 

  43. Hansson, E. 1984. Enzyme activities of monoamine oxidase, cathechol-O-methyltransferase and gamma-amino-butyric acid transaminase in primary astroglial cultures and adult rat brain from different brain regions. Neurochem. Res. 9:45–57.

    PubMed  Google Scholar 

  44. Hansson, E. 1984. Cellular composition of a cerebral hemisphere primary culture. Neurochem. Res. 9:153–172.

    Google Scholar 

  45. Hansson, E. 1985. Transport of monoamine and amino acid neurotransmitters by primary astroglial cultures. Neurochem. Res. 10:667–675.

    PubMed  Google Scholar 

  46. Hansson, E. 1986. Primary astroglial cultures. A biochemical and functional evaluation. Neurochem. Res. 11:759–766.

    Google Scholar 

  47. Hansson, E. 1986. Co-cultivation of astroglial and neuronal primary cultures from rat brain. Brain Research 366:159–168.

    PubMed  Google Scholar 

  48. Hansson, E. 1987. Astroglia from defined brain regions as studied with primary cultures.In Kerkut, G. A., and Phillis, J. W. (eds.) Progress in neurobiology. Pergamon Press, Oxford.

    Google Scholar 

  49. Hansson, E., and Rönnbäck, L. 1983. Incorporation of3H-valine into soluble protein of cultivated astroglial cells after morphine treatment. J. Neuroci. Res. 10:279–288.

    Google Scholar 

  50. Hansson, E., and Rönnbäck, L. 1985. Amino acid incorporation during morphine intoxication. Part 2. Electrophoretic separation of extracellular proteins from cerebral hemisphere slices and astroglial-enriched primary cultures. J. Neurosci. Res. 14:479–490.

    PubMed  Google Scholar 

  51. Hansson, E., and Rönnbäck, L. 1987. Amino acid incorporation during morphine intoxication. Electrophoretic separation of extracellular proteins from brain stem astrolgial and neuronal containing co-cultivation system. Neurochem. Int. 10:83–88.

    Google Scholar 

  52. Harris, R. A., Dunn, A., and Harris, L. S. 1974. Effects of acute and chronic morphine administration on the incorporation of3H-lysine into mouse brain and liver proteins. Res. Commun. Chem. Pathol. Pharmacol. 9:299–306.

    PubMed  Google Scholar 

  53. Harris, R. A., Harris, L. S., and Dunn, A. 1975. Effect of narcotic drugs on ribonucleic acid and nucleotide metabolism in mouse brain. J. Pharmacol. Exp. Ther. 192:280–287.

    PubMed  Google Scholar 

  54. Hitzemann, R. J., and Loh, H. H. 1976. Influence of morphine on protein synthesis in diserete subcellular fractions of the rat brain. Res. Commun. Chem. Pathol. Pharmacol. 14:237–248.

    PubMed  Google Scholar 

  55. Hitzemann, R. J., and Loh, H. H. 1977. Influence of morphine on protein synthesis in synaptic plasma membranes of the rat brain. Res. Commun. Chem. Pathol. Pharmacol. 17:15–28.

    PubMed  Google Scholar 

  56. Hitzemann, R. J., Natsuki, R., Ohizumi, Y., Johnson, D., and Loh, H. H. 1979. Influence of morphine on membrane turnover and function. Pages 495–520in Loh, H. H., and Ross, D. H. (eds.) Advances in biochemical psychopharmacology, 20: Neurochemical mechanisms of opiates and endorphins. Raven Press, New York.

    Google Scholar 

  57. Hofstein, R., Hesse, G., and Shashoua, V. E. 1983. Proteins of the extracellular fluid of mouse brain: Extraction and partial characterization. J. Neurochem. 40:1448–1455.

    PubMed  Google Scholar 

  58. Hook, V. Y. H., Lee, N. M., and Loh, H. H. 1980. Partial purification of nuclear protein kinase from small dense nuclei of mouse brain and the effect of chronic morphine treatment. J. Neurochem. 34:1274–1279.

    PubMed  Google Scholar 

  59. Hösli, L., Hösli, E., Zehnter, C., Lehmann, R., and Lutz, T. W. 1982. Evidence for the existence of alfa-and beta-adrenoceptors on cultured glia cells—an electrophysiological study. Neuroscience 7:2867–2872.

    PubMed  Google Scholar 

  60. Hui, K. S., and Roberts, M. B. 1975. An improved implantation pellet for rapid induction of morphine dependence in mice. J. Pharmacol. Pharmac. 27:569–573.

    Google Scholar 

  61. Huidobro, F. 1971. Some relations between tolerance and physical dependence to morphine in mice. Europ. J. Pharmacol. 15:79–84.

    Google Scholar 

  62. Iwamoto, K., and Klaassen, C. D. 1977. First-pass effect of morphine in rats. J. Pharmacol. Exp. Ther. 200:236–244.

    PubMed  Google Scholar 

  63. Jackler, F. 1979. Morphine and intracranial self-stimulation in the hypothalamus and dorsal brain stem: differential effects of dose, time and site. Intern. J. Neurosci. 9:21–35.

    Google Scholar 

  64. Joshi, M. S., and Ford, D. H. 1976. An electrophoretic study of cerebrospinal fluid proteins in humans addicted to heroin or treated with methadone. Pages 509–515in Ford, D. H., and Clouet, D. H. Tissue responses to addictive drugs. Spectrum Publications, Inc.

  65. Kalant, H. 1978. Biochemical aspects of tolerance to, and physical dependence on central depressants. Pages 317–331in Neuhoff, V. (ed.) Proc. of the European Society for Neurochemistry, Vol. 1. Verlag Chemie, Weinheim-New York.

    Google Scholar 

  66. Katz, R. J., and Gormezano, G. 1979. A rapid and inexpensive technique for assessing the reinforcing effects of opiate drugs. Pharmacol. Biochem. Behav. 11:231–233.

    PubMed  Google Scholar 

  67. Kettenmann, H., Backus, K. H., and Schachner, M. 1984. Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes. Neurosci. Lett. 52:25–29.

    PubMed  Google Scholar 

  68. Khavari, K. A., and Risner, M. E. 1973. Opiate dependence produced by adlibitum drinking of morphine in water, saline and sucrose vehicles. Psychopharmacol. (Berl.) 30:291–302.

    Google Scholar 

  69. Klee, W. A., and Nirenberg, M. 1974. A neuroblastoma glioma hybride cell line with morphine receptors. Proc. Nat. Acad. Sci. (USA) 71:3474–3477.

    Google Scholar 

  70. Kornetsky, C., and Bain, G. 1968. Morphine: Single-dose tolerance. Science 162:1011–1012.

    PubMed  Google Scholar 

  71. Kosersky, D. S., Ryan, G. P. and Howes, J. F. 1979. Physical dependence and tolerance development to sustained low concentrations of morphine in mice. J. Pharm. Pharmacol. 31:335–336.

    PubMed  Google Scholar 

  72. Kosterlitz, H. W., and Hughes, J. 1975. Some thoughts on the singnificance of enkephalin, the endogenous ligand. Life Sciences 17:91–96.

    PubMed  Google Scholar 

  73. Kuffler, S. W., and Nicholls, J. G. 1966. The physiology of neuroglial cells. Ergeb. Physiol. (Biol. Chem. Exp. Pharmakol.) 57:1–90.

    Google Scholar 

  74. Kuschinsky, K. 1971. Effect of morphine on protein synthesis in synaptosomes and mitochondria of mouse brain in vivo. Naunyn-Schmidebergs Arch. Pharmak. 271:294–300.

    Google Scholar 

  75. Lang, D. W., Darrah, H. K., Hedley-Whyte, J., and Laasberg, L. H. 1975. Uptake into brain proteins of35S-methionine during morphine tolerance. J. Pharmacol. Exp. Ther. 192:521–530.

    PubMed  Google Scholar 

  76. Laska, F. J., and Fennessy, M. R. 1976. Physical dependence in the rat induced by slow release morphine: doseresponse, time course and brain biogenic amines. Clin. Exp. Pharmacol. Physiol. 3:587–598.

    PubMed  Google Scholar 

  77. Lee, N. M., Craves, F. B., and Stokes, K. B. 1979. Effect of opiates on macromolecule biosynthesis. Pages 521–539in Loh, H. H., and Ross, D. H. (eds.) Advances in biochemical psychopharmacology, 20: Neurochemical mechanisms of opiates and endorphins. Raven Press, New York.

    Google Scholar 

  78. Levi, M. A., Rhines, R. K., and Ford, D. H. 1976. The effect of morphine on the metabolic transport of3H-lysine and incorporation into protein. Pages 471–488in Ford, D. H., and Clouet, D. H. (eds.) Tissue responses to addictive drugs. Spectrum Publications, Inc.

  79. Loh, H. H., and Hitzemann, R. J. 1974. Effect of morphine on the turnover and synthesis of (Leu-3H)-protein and (Ch-14C)-phosphatidylcholine in discrete regions of the rat brain. Biochem. Pharmacol. 23:1753–1765.

    PubMed  Google Scholar 

  80. Loh, H. H., Shen, F. H., and Way, E. L. 1969. Inhibition of morphine tolerance and physical dependence development and brain serotonin synthesis by cycloheximide. Biochem. Pharmacol. 18:2711–2721.

    PubMed  Google Scholar 

  81. Lubetzki, C., Chesselet, M. F., and Glowinski, J. 1982. Modulation of dopamine release in rat striatal slices by delta opiate agonists. J. Pharmacol. Exp. Ther. 222:435–440.

    PubMed  Google Scholar 

  82. Mayer, D. J., and Hayes, R. L. 1975. Stimulation-produced analgesia: development of tolerance and cross-tolerance to morphine. Science 188:941–943.

    PubMed  Google Scholar 

  83. McMillan, D. E., Leander, J. D., Wilson, T. W., Wallace, S. C., Fix, T., Redding, S., and Turk, R. T. 1976. Oral ingestion of narcotic analgesics by rats. J. Pharmacol. Exp. Ther. 196:269–279.

    PubMed  Google Scholar 

  84. Miglécz, E., Székely, J. I., and Dunai-Kovács, Z. 1979. Comparison of tolerance development and dependence capacities of morphine beta-endorphin, and [D-Met2, Pro5]-enkephalin-amide. Psychopharmacology 62:29–34.

    PubMed  Google Scholar 

  85. Nakajima, T., Sasano, H., Koida, M., and Kaneto, H. 1975. Protein synthesis in mouse brain during development of acute morphine tolerance. Japan J. Pharmacol. 25:367–374.

    Google Scholar 

  86. North, R. A., and Karras, P. J. 1978. Opiate tolerance and dependence induced in vitro in single myenteric neurones. Nature 272:73–75.

    PubMed  Google Scholar 

  87. O'Callaghan, J. P., Williams, N., and Clouet, D. H. 1979. The effect of morphine on the endogenous phosphorylation of synaptic plasma membrane proteins of rat striatum. J. Pharmacol. Exp. Ther. 208:96–105.

    PubMed  Google Scholar 

  88. Oguri, K., Lee, N. M., and Loh, H. H. 1976. Apparent protein kinase activity in oligodendroglial chromatin after chronic morphine treatment. Biochem. Pharmacol. 25:2371–2376.

    PubMed  Google Scholar 

  89. Pearce, B., Cambray-Deakin, M., and Murphy, S. 1985. Astrocyte opioid receptors: activation modifies the noradrenaline-evoked increase in 2-[14C] deoxyglucose incorporation into glycogen. Neurosci. Letters 55:157–160.

    Google Scholar 

  90. Pepper, C. M., and Henderson, G. 1980. Opiates and opioid peptides hyperpolarize locus coeruleus neurons in vitro. Science 209:394–395

    PubMed  Google Scholar 

  91. Retz, K. C., and Steele, W. J. 1982: Mechanism of inhibition of protein synthesis by morphine in rat brain and liver. Molec. Pharmacol. 22:706–714.

    Google Scholar 

  92. Retz, K. C., and Steele, W. J. 1983. Blockade of morphine dependence-related enhancement of secretory protein synthesis in the pons medulla and striatum-septum by naltrexone. Neuropharmacology 22:183–189.

    PubMed  Google Scholar 

  93. Risner, M. E., and Khavari, K. A. 1973. Morphine dependence in rats produced after five days of ingestion. Psychopharmacol. (Berl.) 28:51–62.

    Google Scholar 

  94. Ritzmann, R. F. 1981. Opiate dependence following acute injections of morphine and naloxone: The assessment of various withdrawal signs. Pharmacol Biochem. Behav. 14:575–577.

    PubMed  Google Scholar 

  95. Raitbak, A. J. 1970. A new hypothesis concerning the mechanism of formation of the conditioned reflex. Acta Neurobiol. Exp. 30:81–94.

    Google Scholar 

  96. Rönnbäck, L., and Hansson, E. 1985. Amino acid incorporation during morphine intoxication. I: Dose and time effects of morphine on protein synthesis in specific regions of the rat brain and in astroglia-enriched primary cultures. J. Neurosci. Res. 14:461–477.

    PubMed  Google Scholar 

  97. Rönnbäck, L., and Hansson, E. 1986. Stimulation of brainstem protein synthesis by morphine. Biochem. Pharmacol. 35:3685–3692.

    PubMed  Google Scholar 

  98. Rönnbäck, L., Eriksson, P., Zeuchner, J., Rosengren, L., and Wronski, A. 1987. Aspects of abstinence after morphine ingestion. Biochem. Pharmacol. Behav. 27:

  99. Rönnbäck, L., Hansson, E., Cupello, A., Rapallino, M. V., Zeuchner, J., and Rosengren, L. 1986. Neurotransmitter uptake in various brain regions of chronically morphinized rats. Neurochem. Res. 11:317–326.

    PubMed  Google Scholar 

  100. Rönnbäck, L., Wikkelsø, C., and Blomstrand, C. 1983. Macromolecular changes in brain stem of morphinized rats. Neurochem. Res. 8:1487–1495.

    PubMed  Google Scholar 

  101. Ross, D. H. 1975. Tolerance to morphine-induced calcium depletion in regional brain areas: characterization with reserpine and protein synthesis inhibitors. Br. J. Pharmac. 55:431–437.

    Google Scholar 

  102. Rougon, G., Noble, M., and Mudge, A. W. 1983. Neuropeptides modulate the beta-adrenergic response of purified astrocytes in vitro. Nature 305:715–717.

    PubMed  Google Scholar 

  103. Satoh, M., Zieglgänsberger, W., and Hertz, A. 1976. Actions of opiates upon single unit activity in the cortex of naive and tolerant rats. Brain Research 115:99–110.

    PubMed  Google Scholar 

  104. Schousboe, A. Hertz, L., and Svenneby, G. 1977. Uptake and metabolism of GABA in astrocytes cultured from dissociated mouse brain hemispheres. Neurochem. Res. 2:217–229.

    Google Scholar 

  105. Schousboe, A., Svenneby, G. and Hertz, L. 1977. Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J. Neurochem. 29:999–1005.

    PubMed  Google Scholar 

  106. Schulz, R., Wuster, M., Krenss, H. and Herz, A. 1980. Selective development of tolerance without dependence in multiple opiate receptors of mouse vas deferens. Nature 285:242–243.

    PubMed  Google Scholar 

  107. Seevers, M. H., and Deneau, G. A. 1963. Physiological aspects of tolerance and physical dependence. P. 565in Root, W. F. and Hofmann, F. G. (eds.) Physiological pharmacology. Academic Press, New York.

    Google Scholar 

  108. Sharma, S. K., Klee, W. A., and Nirenberg, M. 1975. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Nat. Acad. Sci. (USA) 72:3092–3096.

    Google Scholar 

  109. Sharma, S. K., Nirenberg, M., and Klee, W. A. 1975. Morphine receptors as regulators of adenylate cyclase activity. Proc. Nat. Acad. Sci. (USA) 72:590–594.

    Google Scholar 

  110. Shashoua, V. E. 1976. Identification of specific changes in the pattern of brain protein synthesis after training. Science 193:1264–1266.

    PubMed  Google Scholar 

  111. Shashoua, V. E. 1979. Brain metabolism and the acquisition of new behaviors. III Evidence for secretion of two proteins into the brain extracellular fluid after training. Brain Research 166:349–358.

    PubMed  Google Scholar 

  112. Shashoua, V. E. 1981. Extracellular fluid proteins of goldfish brain: Studies of concentration and labeling patterns. Neurochem. Res. 6:1129–1147.

    Google Scholar 

  113. Shuster, L. 1961. Repression and de-repression of enzyme synthesis as a possible explanation of some aspects of drug addiction. Nature (Lond.) 189:314–315.

    Google Scholar 

  114. Smith, S. G., Werner, T. E., and Davis, W. M. 1981. Intragastric drug self-administration by rats exposed succesively to morphine and ethanol. Drug and Alcohol Dependence 7:305–310.

    PubMed  Google Scholar 

  115. Spoerlein, M. T., and Scrafani, J. 1967. Effects of time and 8-azaguanine on the development of morphine tolerance. Life Sci. 6:1549–1564.

    Google Scholar 

  116. Stolerman, I. P., and Kumar, R. 1970. Preferences for morphine in rats: validation of an experimental model of dependence. Psychopharmacol. (Berl.) 17:137–150.

    Google Scholar 

  117. Stolman, S., and Loh, H. H. 1975. Stabilization of brain free polysomes by morphine. Res. Commun. Chem. Pathol. Pharmacol. 12:419–424.

    PubMed  Google Scholar 

  118. Suzuki, T., Shimada, M., Yoshii, T., Uesugi, J., and Yanaura, S. 1983. Development of physical dependence on and tolerance to morphine in rats treated with morphine-admixed food. Prog. Neuro-Psychopharmacol. and Biol. Psychiat. 7:63–71.

    Google Scholar 

  119. Svaetichin, G., Negishi, K. Fatehchand, R., Drujan, B. D., and Selvin De Testa, A. 1965. Nervous function based on interactions between neuronal and non-neuronal elements. Prog. Brain Res. 15:243–266.

    PubMed  Google Scholar 

  120. Takemori, A. E. 1974. Biochemistry of drug dependence. Ann. Rev. Biochem. 43:15–33.

    PubMed  Google Scholar 

  121. Traber, J., Fischer, K., Latzin, S., and Hamprecht, B. 1975. Morphine antagonizes action of prostaglandin in neuroblastoma×glioma hybride cells. Nature (Lond.) 253:120–122.

    Google Scholar 

  122. Tseng, L.-F., Loh, H. H., and Li, C. H. 1976. Beta-endorphin: cross tolerance to and cross physical dependence on morphine. Proc. Nat. Acad. Sci. (USA) 73:4187–4189.

    Google Scholar 

  123. Walsh, C. T., and Levine, R. R. 1975. Studies of the enterohepatic circulation of morphine in the rat. J. Pharmacol. Exp. Ther. 195:303–310.

    PubMed  Google Scholar 

  124. Van Calker, D., and Hamprecht, B. 1980. Effects of neurohormones on glial cells. Pages 31–67in Fedoroff, S., and Hertz, L., (eds.) Advances in cellular neurobiology Vol. 1. Academic Press, New York.

    Google Scholar 

  125. Watanabe, H. 1971. The development of tolerance to and of physical dependence on morphine following intraventricular injection in the rat. Japan J. Pharmacol. 21:383–391.

    Google Scholar 

  126. Waterfield, A. A., Hughes, J., and Kosterlitz, H. W. 1976. Cross-tolerance between morphine and methionine-enkephalin. Nature 260:624–625.

    PubMed  Google Scholar 

  127. Way, E. L., Loh, H. H., and Shen, F. 1969. Simultaneous quantitative assessment of morphine tolerance and physical dependence. J. Pharmacol. Exp. Ther. 167:1–8.

    PubMed  Google Scholar 

  128. Weeks, J. R., and Collins, R. J. 1979. Dose and physical dependence as factors in the self-administration of morphine by rats. Psychopharmacol. 65:171–177.

    Google Scholar 

  129. Wei, E., and Loh, H. 1976. Physical dependence on opiate-like peptides. Science 193:1262–1263.

    PubMed  Google Scholar 

  130. Villarreal, J. E., Martinez, J. N., and Castro, A. 1977. Validation of a new procedure to study narcotic dependence in the isolated guinea-pig ileum. Proc. Committee on Problems of Drug Dependence, Boston.

  131. Williams, N., and Clouet, D. H. 1982. The effect of acute opioid administration on the phosphorylation of rat striatal synaptic membrane proteins. J. Pharmacol. Exp. Ther. 220:278–286.

    PubMed  Google Scholar 

  132. Williams, J. T., Egan, T. M., and North, R. A. 1982. Enkephalin opens potassium channels on mammalian central neurones. Nature 299:74–77.

    PubMed  Google Scholar 

  133. Yaksh, T. L., Kohl, R. L., and Rudy, T. A. 1977. Induction of tolerance and withdrawal in rats receiving morphine in the spinal subarachnoid space. Europ. J. Pharmacol. 42:275–284.

    Google Scholar 

  134. Yanaura, S., and Suzuki, T. 1979. Eating pattern of morphine dependent rats. Japan J. Pharmacol. 29:753–762.

    Google Scholar 

  135. Yano, I., Nishino, H., and Murano, T. 1979. Antagonism by naloxone of tolerance and dependence in mice given a single dose of morphine. Japan J. Pharmacol. 29:357–366.

    Google Scholar 

  136. Zeuchner, J., Rosengren, L., Wronski, A., and Rönnbäck, L. 1982. A new ingestion method for long-term morphine intoxication in rat. Pharmacol. Biochem. Behav. 17:495–501.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rönnbäck, B., Hansson, E. Are astroglial cells involved in morphine tolerance?. Neurochem Res 13, 87–103 (1988). https://doi.org/10.1007/BF00973320

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973320

Key Words

Navigation