Skip to main content
Log in

Determination of hydrophobicity of myelinic, synaptosomal, and mitochondrial surfaces in the rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The hydrophobicity of myelinic, synaptosomal and mitochondrial surfaces in the rat brain was measured using the nonionic surfactant, C18H37O(CH2CH2O)13H. This method is based on the adsorption of the hydrophobic alkyl group of the surfactant by the hydrophobic sites on the surfaces. Each preparations was mixed with an excess of the surfactant and the surfactant remaining in the supernatants was determined spectrophotometrically by measuring the absorbance of tetrabromophenolphthalein ethylester at 690 nm. The greatest amount was adsorbed by myelin, followed by synaptosomes and mitochondria. The hydrophobicity is shown to be a reflection of the surface lipids. This method showed good reproducibility and was useful for the quantitative determination of hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, R. A., and Schroeder, F. 1981. Ethanol and the physical properties of brain membranes. Fluoresence studies. Mol. Pharmacol. 20:128–137.

    Google Scholar 

  2. Rowe, E. S. 1983. Lipid chain length and temperature dependence of ethanol-phosphatidylcholine interactions. Biochemistry 22:3299–3305.

    Google Scholar 

  3. Fernandez, Y. J., Boigegrain, R-A. M., Cambon-Gros, C. D., and Mitjavila, S. E. 1984. Sensitivity of Na+-couples D-glucose uptake, Mg2+-ATPase and sucrose to perturbations of the fluidity of brush-border membrane vesicles induced by n-aliphitic alcohols. Biochim. Biophys. Acta. 770:171–177.

    Google Scholar 

  4. Kreishman, G. P., Graham-Brittain, C., Hitzemann, R. J. 1985. Determination of ethanol partition coefficients to the interior and the surface of dipalmityl-phosphatidylcholine liposomes using deuterium nuclear magnetic resonane spectroscopy. Biochem. Biophys. Res. Commun. 130:301–305.

    Google Scholar 

  5. Hitzemann, R. J., Schueler, H. E., Graham-Brittain, C., and Kreishman, G. P. 1986. Ethanol-induced changes in neuronal membrane order. An NMR study. Biochim. Biophs. Acta 859:189–197.

    Google Scholar 

  6. Pope, J. M., and Dubro, D. W. 1986. The interaction of nalkanes and n-alcohols with lipid bilayer membranes: a2HNMR study. Biochim. Biophs. Acta 858:243–253.

    Google Scholar 

  7. Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24:583–655.

    Google Scholar 

  8. Miller, K. W., and Pang, K-Y. Y. 1976. General anaesthetics can selectively perturb lipid bilayer membranes. Nature 263:253–255.

    Google Scholar 

  9. Rosenberg, P. H., Jansson, S-E., and Gripenberg, J. 1977. Effects of halothane, thiopental, and lidocaine on fluidity of synaptic plasma membranes and artificial phospholipid membranes. Anesthesiology 46:322–326.

    Google Scholar 

  10. Trudell, J. R. 1977. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46:5–10.

    Google Scholar 

  11. Mountcastle, D. B., Biltonen, R. L., and Halsey, M. J. 1978. Effect of anesthetics and pressure on the thermotropic behavior of multilamellar dipalmitoylphosphatudylcholine liposomes. Proc. Natl. Acad. Sci. USA 75:4906–4910.

    Google Scholar 

  12. Janoff, A. S., and Miller, K. W. 1982. A critical assessment of the lipid theories of general anaethetic action. Pages 417–476,in Chapman, D. (Ed.), Biological Membranes, vol. 4, Academic Press, London.

    Google Scholar 

  13. Jain, M. K., Wu, N. Y.-M., and Wray, L. V. 1975. Druginduced phase changes in bilayer as possible mode of action of membrane expanding drugs. Nature 255:494–496.

    Google Scholar 

  14. Noda, Y., and Kanemasa, Y. 1986. Determination of hydrophobicity on bacterial surfaces by nonionic surfactants. J. Bacteriol. 167:1016–1019.

    Google Scholar 

  15. Folch, J., Lees, M., and Sloane-Stanley, G. H. 1975. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    Google Scholar 

  16. Rathbone, L., and Maroney, P. M. 1963. Preparation of phosphatidylserine. Nature 200:887–888.

    Google Scholar 

  17. Rouser, G., Kritchevsky, G., and Yamamoto, A. 1967. Column chromatographic and associated procedures for separation and determination of phosphatides and glycolipids. Pages 99–162,in Marimetti, G. V. (ed.), Lipid Chromatographic Analysis, Marcel Dekker, New York.

    Google Scholar 

  18. Gray, E. G., and Whittaker, V. P. 1962. The isolation of nerve endings from brain: An electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96:79–88.

    Google Scholar 

  19. Whittaker, V. P., and Baker, L. A. 1972. The subcellular fractionation of synaptosomes and their component organelles. Pages, 1–52,in Fried, R. (ed.), Method of Neurochemistry, vol. 2, Marcel Dekker, New York.

    Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  21. Cuzner, M. L., Davison, A. N., and Grefson, N. A. 1965. Chemical and metabolic studies of rat myelin of the central nervous system. Ann. N. Y. Acad. Sci. 122:86–94.

    Google Scholar 

  22. Norton, W. T. 1972. Formation, structure, and biochemistry of myelin. Pages, 76–79,in Siegel, G. J., Albers, R. S., Agranoff, B. W., and Katsman, R. (ed.), Basic Neurochemistry, Little, Brown and Co., Boston.

    Google Scholar 

  23. Norton, W. T., and Poduslo, S. E. 1973. Myelination in rat brain: Changes in myelin composition during brain maturation. J. Neurochem. 21:759–773.

    Google Scholar 

  24. Seminario, L. M., Hren, H., and Gomez, C. J. 1964. Lipid distribution in subcellular fractions of the rat brain. J. Neurochem. 11:197–207.

    Google Scholar 

  25. Dikerson, J. W. T. 1968. The composition of nervous tissues. Pages, 48–115, in Davison, A. N., and Dobbing, J. (ed.), Applied Neurochemistry, Blackwell Sci. Pub. Oxford-Edinburgh.

    Google Scholar 

  26. Lapetina, E. G., Soto, E. F., and Derobertis, E. 1968. Lipids and proteolipids in isolated subcellular membranes of rat brain cortex. J. Neurochem. 15:437–445.

    Google Scholar 

  27. Noda, Y., Tôei, K., and Mori, A. 1987. Effect of alcohol on the hydrophobicity of the myelinic, synaptosomal and mitochondrial surfaces in the rat brain. Med. Sci. Res. 1987 15:579–580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, Y., Tôei, K. & Mori, A. Determination of hydrophobicity of myelinic, synaptosomal, and mitochondrial surfaces in the rat brain. Neurochem Res 13, 557–560 (1988). https://doi.org/10.1007/BF00973297

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973297

Key Words

Navigation