Skip to main content
Log in

Regulation fo protein kinase C activity by various lipids

  • Original Articles
  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Protein kinase C has recently attracted considerable attention because of its importance in the control of cell division, cell differentiation, and signal transduction across the cell membrane. The activity of this enzyme is altered by several lipids such as diacylglycerol, free fatty acids, lipoxins, gangliosides, and sulfatides. These lipids may interact with protein kinase C either directly or through calcium ions and produce their regulatory effect (activation or inhibition) on the activities of the enzymes phosphorylated by this kinase. These processes widen our perspective of the regulation of intercellular and intracelluular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(PK-C):

Protein kinase C

(cAMP-PK):

cAMP dependent protein kinase

(DAG):

diacylglycerol

(PtdSer):

phosphatidylserine

(InsP 3):

inositol 1,4,5-trisphosphate

(PtdIns 4,5-P2):

inositol 4,5 bisphosphate

(FFA):

free fatty acid

(MBP):

myelin basic protein

(ATP):

adenosine triphosphate

(GTP):

guanine triphosphate

(TPA):

12-tetradecanoylphorbol-13-acetate

(EGF):

epidermal growth factor

(PDGF):

platelet derived growth factor

(NeuNAc):

and N-acetylneuraminic acid

References

  1. Lefkowitz, R. J., Caron, M. G., and Stiles, G. L., 1984. Mechanisms of membrane receptor regulation. New Eng. J. Med. 310:1570–1579.

    Google Scholar 

  2. Nestler, E. J., Walaas, S. I., and Greengard, P. 1984. Neuronal phosphoproteins: Physiological and clinical implications. Science 225:1357–1364.

    Google Scholar 

  3. Cohen, P. 1982. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature (London) 296:613–620.

    Google Scholar 

  4. Rasmussen, H., and Barrett, P. Q. 1984. Calcium messenger system: an integrated view. Physiol. Rev. 64:938–984.

    Google Scholar 

  5. Ebashi, S. 1985. Ca2+ in biological systems. Experientia 41:978–981.

    Google Scholar 

  6. Murer, E. H. 1985. The role of platelet calcium. Seminars Hemat. 22:313–323.

    Google Scholar 

  7. Levine, B. A., and Dalgarno, D. C. 1983. The dynamics and function of calcium-binding proteins. Biochim. Biophys. Acta 726:187–204.

    Google Scholar 

  8. Cox, J. A. 1984. Sequential events in calmodulin on binding with calcium and interaction with target enzymes. Fed. Proc. 43:3000–3004.

    Google Scholar 

  9. Berridge, M. J. 1986. Growth factors, oncogenes and inositol lipids. Cancer Surveys 5:413–430.

    Google Scholar 

  10. Berridge, M. J. 1985. Intracellular signalling through inositol trisphosphate and diacylglycerol. Biol. Chem. Hoppe-Seyler 367:447–456.

    Google Scholar 

  11. Berridge, M. J. 1984. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220:345–360.

    Google Scholar 

  12. Nishizuka, Y. 1986. Studies and perspectives of protein kinase C. Science 233:305–312.

    Google Scholar 

  13. Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature (London) 308:693–698.

    Google Scholar 

  14. Sekar, M. C., and Hokin, L. E. 1986. The role of phosphoinositides in signal transduction. J. Membrane Biol. 89:193–210.

    Google Scholar 

  15. Abdel-Latif, A. A. 1986. Calcium-mobilizing receptors, polyphosphoinositides and the generation of second messengers. Pharm. Rev. 38:227–272.

    Google Scholar 

  16. Williamson, J. R. 1986. Role of inositol lipid breakdown in the generation of intracellular signals—state of the art lecture. Hypertension 8:II 140–156.

    Google Scholar 

  17. Bell, R. M. 1986. Protein kinase C activation by diacylglycerol second messenger. Cell 45:631–632.

    Google Scholar 

  18. Cuatrecasas, P. 1986. Hormone receptors, membrane phospholipids and protein kinases. The Harvey Lectures Series 80:89–128.

    Google Scholar 

  19. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y. 1982. Calcium-activated, phospholipid dependent protein kinase from rat brain—subcellular distribution, purification and properties. J. Biol. Chem. 257:13341–13348.

    Google Scholar 

  20. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T., and Nishizuka, Y. 1979. Unsaturated diacylglycerol as a possible messenger for the activation of calcium activated phospholipid-dependent protein kinase system. Biochem. Biophys. Res. Commun. 91:1218–1224.

    Google Scholar 

  21. Kuo, J. F., Anderson, R. G. G., Wise, B. C., Mackerlova, L., Salomonsson, I., Brackett, N. L., Katoh, N., Shoji, M., and Wrenn, R. W. 1980. Calcium dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effect of phospholipid, calmodulin and trifluoperazine. Proc. Natl. Acad. Sci. (USA) 77:7039–7043.

    Google Scholar 

  22. Katoh, N., and Kuo, J. F. 1982. Subcellular distribution of phospholipid-sensitive, calcium dependent protein kinase in guinea pig heart, spleen and cerebral cortex and inhibition of the enzyme by Triton X-100. Biochem. Biophys. Res. Commun. 106:590–595.

    Google Scholar 

  23. Helfman, D. M., Appelbaun, B. D., Vogler, W. R., and Kuo, J. F. 1983. Phospholipid-sensitive Ca2+ dependent protein kinase and its substrate in human neutrophils. Biochem. Biophys. Res. Commun. 111:847–853.

    Google Scholar 

  24. Wise, B. C., Raynor, R. L., and Kuo, J. F. 1982. Phospholipid sensitive Ca2+-dependent protein kinase from heart: Purification and general properties. J. Biol. Chem. 257:8481–8488.

    Google Scholar 

  25. Parker, P. J., Goris, J., and Merlevede, W. 1986. Specificity of protein phosphatases in the dephosphorylation of protein kinase C. Biochem. J. 246:63–67.

    Google Scholar 

  26. Bignon, Y. J. and Plagne, R. 1986. Oncogenes. Biomed. 40:138–142.

    Google Scholar 

  27. Coussens, L., Parker, P. J., Rhee, L., Yang-Feng, T. L., Chen, E., Waterfield, M. D., francke, U., and Ullrich, A. 1986. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science 233:859–866.

    Google Scholar 

  28. Huang, K. P., Nakabayashi, H., and Huang, F. L. 1986a. Isozymic forms of rat brain Ca2+-activated and phospholipid-dependent protein kinase. Proc. Natl. Acad. Sci. 83:8535–8539.

    Google Scholar 

  29. May, W. S., Sahyoun, N., Wolf, M., and Cuatrecasas, P. 1985. Role of intracellular calcium mobilization in the regulation of protein kinase C mediated membrane processes. Nature (London) 317:549–557.

    Google Scholar 

  30. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y. 1980. Activation of calcium and phospholipid dependent protein kinase by diacylglycerol. Its possible relation to phosphatidylinositol turnover. J. Biol. Chem. 255:2273–2276.

    Google Scholar 

  31. Cabot, M. C., and Jakens, S. 1984. Structural and chemical specificity of diacylglycerols for protein kinase C activators. Biochem. Biophys. Res. Commun. 125:163–169.

    Google Scholar 

  32. Lapetina, E. G., Reep, B., Ganong, B. R., and Bell, R. M. 1985. Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets. J. Biol. Chem. 260:1358–1361.

    Google Scholar 

  33. Boni, L. T., and Rando, R. R. 1985. The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. J. Biol. Chem. 260:10819–10825.

    Google Scholar 

  34. Nomura, H., Ase, K., Sekiguchi, K., Kikkawa, U., Nishizuka, Y., Nakano, Y., and Satoh, T. 1986. Stereospecificity of diacylglycerol for stimulus-response coupling in platelets. Biochem. Biophys. Res. Commun. 140:1143–1151.

    Google Scholar 

  35. Brockerhoff, H. 1986. Membrane protein-lipid hydrogen bonding: evidence from protein kinase C, diglyceride and tumor promotors. FEBS Lett. 201:1–4

    Google Scholar 

  36. Hannun, Y. A., Loomis, C. R., and Bell, R. M. 1985. Activation of protein kinase C by Triton X-100 mixed micelles containing diacylglycerol and phosphatidylcholine. J. Biol. Chem. 260:10039–10043.

    Google Scholar 

  37. Hannun, Y. A., Loomis, C. R., and Bell, R. L. 1986. Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipids, diacylglycerol and calcium interdependencies. J. Biol. Chem. 261:7184–7190.

    Google Scholar 

  38. Hannun, Y. A., Loomis, C. R., Merrill, Jr., A. H., and Bell, R. M. 1986. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J. Biol. Chem. 261:12604–12609.

    Google Scholar 

  39. Dawson, R. M. C., Hemington, N., and Irvine, R. F. 1985. The inhibition of diacylglycerol-stimulated intracellular phospholipases by phospholipids with a phosphocholine-containing polar group. Biochem. J. 230:61–68.

    Google Scholar 

  40. Michell, R. H., Allan, D., and Finean, J. B. 1976. Significance of minor glycerolipids in membrane structure and function. Adv. Exp. Biol. Med. 72:3–13.

    Google Scholar 

  41. Bouscarel, B., and Exton, J. H. 1986. Regulation of hepatic glycogen phosphorylase and glycogen synthase by calcium and diacylglycerol. Biochim. Biophys. Acta 888:126–134.

    Google Scholar 

  42. Goldberg, W. J., Dorman, R. V., Dabrowiecki, Z., and Horrocks, L. A. 1985. The effects of ischemia and CDPamines on Na+, K+-ATPase and acetylcholinesterase activities in rat brain. Neurochem. Path. 3:237–248.

    Google Scholar 

  43. Kido, H., Fukusen, N., Ishidoh, K., and Katunuma, N. 1986. Diacylglycerol amplified the induction in vivo of tyrosine aminotransferase and ornithine decarboxylase by glucocorticoid. Biochem. Biophys. Res. Commun. 138: 275–282.

    Google Scholar 

  44. Verma, A. K., Pong, R. C., and Erickson, D. 1986. Involvement of protein kinase C activation in ornithine decarboxylase gene expression in primary culture of newborn mouse epidermal cells and in skin tumor promotion by 12-0-tetradecanoylphorbol-13-acetate. Cancer Res. 46:6149–6155.

    Google Scholar 

  45. Lin, C. H., Bishop, H., and Strickland, K. P. 1986. Properties of diacylglycerol kinase purified from bovine brain. Lipids 21:206–211.

    Google Scholar 

  46. Farooqui, A. A., Taylor, W. A., and Horrocks, L. A. 1986. Membrane bound diacylglycerol lipases in bovine brain. Pages 181–190,in Horrocks, L. A., Toffano, G., and Freysz, L. (eds.), Phospholipids in the Nervous System, Fidia Research Series. Liviana Press, Italy.

    Google Scholar 

  47. Farooqui, A. A., Taylor, W. A., and Horrocks, L. A. 1987. Membrane bound diacylglycerol lipases of bovine brain. Pages 729–746,in Goheen, S. C. (ed), Proc. Membrane Protein Symposium, Bio-Rad Laboratories.

  48. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y. 1982. Direct activation of Ca2+-activated, phospholipid-dependent protein kinase by tumorpromoting phorbol esters. J. Biol. Chem. 257:7847–7857.

    Google Scholar 

  49. Vandenbark, G. R., Kuhn, L. J., and Niedel, J. E. 1984. Possible mechanism of phorbol diester induced maturation of human promyelocytic leukemia cells. J. Clin. Invest. 73:448–457.

    Google Scholar 

  50. Brasseur, R., Cabiaux, V., Huart, P., Castagna, M., Bazter, S., and Ruysschaert, J. M. 1985. Structural analogies between protein kinase C activators. Biochem. Biophys. Res. Commun. 127:969–976.

    Google Scholar 

  51. Weinstein, I. B., Gattoni-Celli, B., Kirschmeier, P., Lambert, M., Hsiao, W., Backer, J., and Jeffrey, A. 1984. Stereochemical model of phorbol esters. Pages 229–237,in Levine, A., van Woode, G., Toppe, W., and Waston, J. (eds.), Cancer cells, Cold Spring Harbor Laboratory Symposium 1.

  52. Sharkey, N. A., Leach, K. L., and Blumberg, P. M. 1984. Competitive inhibition by diacylglycerol of specific phorbol ester binding. Proc. Natl. Acad. Sci. USA 81:607–610.

    Google Scholar 

  53. McPhail, L. C., Clayton, C. C., and Snyderman, R. 1984. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science 224:622–625.

    Google Scholar 

  54. Murakami, K., and Routtenberg, A. 1985. Direct activation of purified protein kinase C by unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+. FEBS Lett. 192:189–193.

    Google Scholar 

  55. Murakami, K., Chan, S. Y., and Routtenberg, A. 1986. Protein kinase C activation by cis fatty acid in the absence of Ca2+ and phospholipids. J. Biol. Chem. 261: 15424–15429.

    Google Scholar 

  56. Sekiguchi, K., Tsukuda, M., Ogita, K., Kikkawa, U., and Nishizuka, Y. 1987. Three forms of rat brain protein kinase C: Different response to unsaturated fatty acids. Biochem. Biophys. Res. Commun. 145:797–802.

    Google Scholar 

  57. Leon, A., Facci, L., Toffano, G., Sonnino, S. and Tettamanti, G. 1981. Activation of (Na+, K+)-ATPase by nanomolar concentrations of GM1 ganglioside. J. Neurochem. 37:350–357.

    Google Scholar 

  58. Davis, C. W., and Daly, J. W. 1980. Activation of rat cerebral cortical 3′,5′-cyclic nucleotide phosphodiesterase activity by gangliosides. Molec. Pharm. 17:206–211.

    Google Scholar 

  59. Partington, C. R., and Daly, J. W. 1981. Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes. Molec. Pharm. 15:484–491.

    Google Scholar 

  60. Goldenring, J. R., Otis, L. C., Yu, R. K., and DeLorenzo, R. J. 1985. Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J. Neurochem. 44:1229–1234.

    Google Scholar 

  61. Turner, R. S., Chou, C-H, J., Kibler, R. F., and Kuo, J. F. 1982. Basic protein in brain myelin is phosphorylated by endogenous phospholipid-sensitive Ca2+ dependent protein kinase. J. Neurochem. 39:1397–1404.

    Google Scholar 

  62. Kim, J. Y. H., Goldenring, J. R., DeLorenzo, R. J., and Yu, R. K. 1986. Gangliosides inhibit phospholipid-sensitive Ca2+ dependent kinase phosphorylation of rat myelin basic proteins. J. Neurosci. Res. 15:159–166.

    Google Scholar 

  63. Kreutter, D., Kim, J. Y. H., Goldenring, J. R., Rasmussen, H., Ukomadu, C., DeLorenzo, R. J., and Yu, R. K. 1986. Regulation of protein kinase C activity by gangliosides. J. Biol. Chem. 262:1633–1637.

    Google Scholar 

  64. Chan, K. F. J. 1987. Ganglioside-modulated protein phosphorylation in myelin. J. Biol. Chem. 262:2415–2422.

    Google Scholar 

  65. Chan, K. F. J. 1987. Ganglioside-modulated protein phsophorylation. partial purification and characterization of a ganglioside-stimulated protein. J. Biol. Chem. 262:5248–5255.

    Google Scholar 

  66. Tsuji, S., Nakajima, J., Sasaki, T., and Nagai, Y. 1985. Bioactive gangliosides. IV. Ganglioside GQ1b/Ca2+ dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line, GOTO. J. Biochem. 97:969–972.

    Google Scholar 

  67. Momoi, T. 1986. Activation of protein kinase C by ganglioside GM3 in the presence of calcium and 12-0-tetradecanoylphorbol 13-acetate. Biochem. Biophys. Res. Commun. 138:865–871.

    Google Scholar 

  68. Bremer, E. G., Schlessinger, J., and Hakomori, S-I. 1986. Ganglioside-mediated modulation of cell growth. J. Biol. Chem. 261:2434–2440.

    Google Scholar 

  69. Merrill Jr., A. H., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., and Kinkade Jr., J. M. 1986. Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cell by sphingosine and other long-chain bases. J. Biol. Chem. 261:12610–12615.

    Google Scholar 

  70. Fujiki, H., Yamashita, K., Suganuma, M., Horiuchi, T., Taniguchi, N., and Makita, A. 1986. Involvement of sulfatide in activation of protein kinase C by Tumor promoters. Biochem. Biophys. Res. Commun. 138:153–158.

    Google Scholar 

  71. Irvine, R. F. 1982. How is the level of free arachidonic acid controlled in mammalian cells. Biochem. J. 204:3–16.

    Google Scholar 

  72. Hansson, A., Serhan, C. N., Haeggstrom, J., Ingelman-Sundberg, M., Samuelsson, B., and Morris, J. 1986. Activation of protein kinase C by lipoxin A and other eicosanoids: Intracellular action of oxygenated products of arachidonic acid. Biochem. Biophys. Res. Commun. 134:1215–1222.

    Google Scholar 

  73. Wolf, M., Sahyoun, N., LeVine, III, H., and Cuatrecasas, P. 1984. Protein kinase C: Rapid enzyme purification and substrate-dependence of the diacylglycerol effect. Biochem. Biophys. Res. Commun. 122:1268–1275.

    Google Scholar 

  74. Huang, K. P., Chan, K. F. J., Singh, T. J., Nakabayashi, H., and Huang, F. L. 1986b. Autophosphorylation of rat brain Ca+-activated and phospholipid dependent protein kinase. J. Biol. Chem. 261:12134–12140.

    Google Scholar 

  75. Wightman, P. D., and Raetz, C. R. H. 1984. The activation of protein by kinase C biologically active lipid moieties of lipopolysaccharide. J. Biol. Chem. 259:10048–10052.

    Google Scholar 

  76. Roghani, M., Da Silva, C., and Castagna, M. 1987a. Tumor promotor chloroform is a potent protein kinase C activator. Biochem. Biophys. Res. Commun. 142:738–744.

    Google Scholar 

  77. Roghani, M., Da Silva, C., Guvelli, D., and Castagna, M. 1987b. Benzene and toluene activate protein kinase C. Carcinogen 8:1105–1107.

    Google Scholar 

  78. Kaibuchi, K., Takai, Y., and Nishizuka, Y. 1981. Cooperative roles of various membrane phospholipids in the activation of calcium activated phospholipid dependent protein kinase. J. Biol. Chem. 256:7146–7149.

    Google Scholar 

  79. Gerrard, J. M., Israels, S. J., and Friesen, L. L. 1985. Protein phosphorylation and platelet secretion. Nouv. Rev. Fr. Hematol. 27:267–273.

    Google Scholar 

  80. Levitan, I. B. 1985. Phosphorylation of ion channels. J. Memb. Biol. 87:177–190.

    Google Scholar 

  81. O'Flaherty, J. T., Redman, J. F., and Jacobson, D. P. 1986. Protein kinase C regulates leukotriene B4 receptors in human neutrophils. FEBS Lett. 206:279–282.

    Google Scholar 

  82. Ginsberg, J., and Murray, P. G. 1986. Protein kinase C activators modulate differentiated thyroid function in vitro. FEBS Lett. 206:309–312.

    Google Scholar 

  83. Grinstein, S., Cohen, S., Goetz, J. D., Rothstein, A., mellors, A., and Gelfand, E. W. 1986. Activation of the Na+−H+ antiport by changes in cell volume and by phorbol esters; possible role of protein kinase. Current Topics Memb. Trans. 26:115–134.

    Google Scholar 

  84. Kitagawa, K., Nishino, H., and Iwashima, A. 1986. Possible involvement of protein kinase C in stimulation of amino acid transport by phorbol ester platelet-derived growth factor and A23187 in Swiss 3T3 cells. Experientia 42:1038–1040.

    Google Scholar 

  85. Caulfield, J. J., and Bolander, Jr., F. F. 1986. Involvement of protein kinase C in mouse mammary gland development. J. Endocr. 109:29–34.

    Google Scholar 

  86. Holladay, C. S., and Bolander, Jr., F. F. 1986. Hormonal regulation of protein kinase C in the mouse mammary gland. Proc. Soc. Exp. Biol. Med. 183:343–347.

    Google Scholar 

  87. Sagi-Eisenberg, R. 1985. Possible role for a calcium-activated, phospholipid dependent protein kinase in mode of action of DSCG. Trends Pharm. Sci. 6:198–200.

    Google Scholar 

  88. Miller, R. J. 1986. Protein kinase C: a key regulator of neuronal excitability. Trends Neurosci. 9:538–541.

    Google Scholar 

  89. Yap, W. H., Teo, T. S., McCoy, E., and Tan, Y. H. 1986. Rapid and transient raise in diacylglycerol concentration in Daudi cells exposed to interferon. Proc. Natl. Acad. Sci. USA 83:7765–7769.

    Google Scholar 

  90. Hamilton, T. A., Becton, D. L., Somers, S. D., Gray, P. W., and Adams, D. O. 1985. Interferon-γ modulates protein kinase C activity in murine peritoneal macrophages. J. Biol. Chem. 260:1378–1381.

    Google Scholar 

  91. Flower, R. J. 1985. Background and discovery of lipocortins. Agents and Actions 17:255–262.

    Google Scholar 

  92. Khanna, N. C., Tokuda, M., and Waisman, D. M. 1986. Phosphorylation of lipocortins in vitro by protein kinase C. Biochem. Biophys. Res. Commun. 141:547–554.

    Google Scholar 

  93. Hirata, F. 1981. The regulation of lipomodulin, a phospholipid inhibitory protein, in rabbit neutrophils by phosphorylation. Biol. Chem. 256:7730–7733.

    Google Scholar 

  94. Hirata, F. 1985. Receptor mediated cascade of phospholipid metabolism. Pages 99–105,in Horrocks, L. A., Kanfer, J. N., and Porcellati, G. (eds.), Phospholipids in the Nervous System Vol. 2, Raven Press, New Yor.

    Google Scholar 

  95. Hirata, F., Matsuda, K., Notsu, Y., Mattori, T., del Carmine, R. 1984. Phosphorylation at a tyrosine residue of lipomodulin in mitogen stimulated murine thymocytes. Proc. Natl. Acad. Sci. 81:4717–4721.

    Google Scholar 

  96. Walsh, M. P., Valentine, K. A., Ngai, P. K., Carruthers, C. A., and Hollenberg, M. D. 1984. Ca2+-dependent hydrophobic-interaction chromatography—Isolation of a novel binding protein and protein kinase C from bovine brain. Biochem. J. 224:117–127.

    Google Scholar 

  97. Kuo, J. F., Schatzman, R. C., Turner, R. S., and Mazzei, G. J. 1984. Phospholipid-sensitive, Ca2+-dependent protein kinase: A major protein phosphorylation system. Mol. Cellu. Endocrin. 35:65–73.

    Google Scholar 

  98. Kishimoto, A., Takai, Y., and Nishizuka, Y. 1977. Activation of glycogen phosphorylase kinase by a Ca2+ activated, cyclic nucleotide-independent protein kinase system. J. Biol. Chem. 252:7449–7452.

    Google Scholar 

  99. Hofer, H. W., Schlatler, S., and Graefe, M. 1985. Phosphorylation of phosphofructokinase by protein kinase C changes the allosteric properties of the enzyme. Biochem. Biophys. Res. Commun. 129:892–897.

    Google Scholar 

  100. Rider, M., and Hue, L. 1986. Phosphorylation of purified bovine heart and rat liver 6-phosphofructo-2-kinase by protein kinase C and comparison of the fructose-2,6-bisphosphatase activity of the two enzymes. Biochem. J. 240:57–61.

    Google Scholar 

  101. Nettelblad, F. A., Forsberg, P. O., Humble, E., and Engstrom, L. 1986. Aspects on the phosphorylation of muscle phosphofructokinase by protein kinase C—Inhibition by phosphofructokinase stabilizers. Biochem. Biophys. Res. Commun. 136:445–453.

    Google Scholar 

  102. Naghshineh, S., Noguchi, M., Huang, K. P., and Londos, C. 1986. Activation of adipocyte adenylate cyclase by protein kinase C. J. Biol. Chem. 261:14534–14538.

    Google Scholar 

  103. Nishikawa, M., Hidaka, H., and Adelstein, R. S. 1983. Phosphorylation of smooth muscle heavy meromyosin by calcium activated, phospholipid dependent protein kinase. J. Biol. Chem. 258:14069–14072.

    Google Scholar 

  104. Nishikawa, M., Seller, J. R., Adelstein, H., and Hidaka, H. 1984. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J. Biol. Chem. 259:8808–8812.

    Google Scholar 

  105. Beg, Z. H., Stonik, J. A., and Brewer Jr., H. B. 1985. Phosphorylation of hepatic 3-hydroxy-3-methylglutaryl coenzyme a reductase and modulation of its enzymic activity by calcium activated and phospholipid dependent protein kinase. J. Biol. Chem. 260:1682–1687.

    Google Scholar 

  106. Forsberg, P. O., Humble, E., and Engstrom, L. 1986. Aspects in phosphorylation of muscle phosphofructokinase by protein kinase C. Inhibition by fructokinase stabilizers. Biochem. Biophys. Res. Commun. 136:445–453.

    Google Scholar 

  107. Vuilliet, J., Woodgett, R., Ferrari, S., and Hardie, D. G. 1985. Characterization of the sites phosphorylated on tyrosine hydroxylase by Ca2+ and phospholipid-dependent protein kinase, calmodulin-dependent multiprotein kinase and cyclic AMP-dependent protein kinase. FEBS Lett. 182:335–339.

    Google Scholar 

  108. Papini, E., Grzeskowiak, M., Bellavite, and Rossi, F. 1985. Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils. FEBS Lett. 190:204–208.

    Google Scholar 

  109. DeWald, B., Payne, T. G., and Baggiolini, M. 1984. Activation of NADPH oxidase of human neutrophils. Potentiation chemotactic peptide by diacylglycerol. Biochem. Biophys. Res. Commun. 125:367–373.

    Google Scholar 

  110. Vilgrain, I., Defaye, G., and Chambaz, E. M. 1984. Adrenocortical cytochrome P-450 responsible for cholesterol side chains cleavage is phosphorylated by the calcium activated phospholipid-sensitive protein kinase (protein kinase C). Biochem. Biophys. Res. Commun. 125:554–561.

    Google Scholar 

  111. Zwiller, J., Revel, M., and Malviya, A. N. 1985. Protein kinase C catalyzes phosphorylation of guanylate cyclase in vitro. J. Biol. Chem. 260:1350–1353.

    Google Scholar 

  112. DePaoli-Roach, A., Roach, P. J., Zucker, K. E., and Smith, S. S. 1986. Selective phosphorylation of human DNA methyltransferase by protein kinase C. FEBS Lett. 197:149–153.

    Google Scholar 

  113. Connolly, T. M., Lawing, W. J., and Majerus, P. W. 1986. Protein kinase C phosphorylates human platelet inositol trisphosphate 5′-phosphomoncesterase, increasing the phosphatase activity. Cell 46:951–958>

    Google Scholar 

  114. Hincke, M. T., and Tolnai, S. 1986. Phosphorylation of bovine cardiac calcium-activated neutral protease by protein kinase C. Biochem. Biophys. Res. Commun. 137:559–565.

    Google Scholar 

  115. Tung, H. Y. L. 1986. Phosphorylation of the calmodulin-dependent protein phosphatase by protein kinas C. Biochem. Biophys. Res. Commun. 138:783–788.

    Google Scholar 

  116. Limas, C. J. 1980. Phosphorylation of cardiac sarcoplasmic reticulum by a calcium activated phospholipid dependent protein kinase. Biochem. Biophys. Res. Commun. 96:1378–1383.

    Google Scholar 

  117. Greene, D. A., and Lattimer, S. A. 1986. Protein kinase C agonists acutely normalize decreased ovabain-inhibitable respiration in diabetic rabbit nerve. Implications for (Na+, K+)-ATPase regulation and diabetic complications. Diabetes 35:242–245.

    Google Scholar 

  118. Villalba, M., Pagares, M. A., Renart, M. F., and Mato, J. M. 1987. Protein kinase C catalyses the phosphorylation and activation of rat liver phospholipid methyltransferase. Biochem. J. 241:911–916.

    Google Scholar 

  119. Ryu, S. H., Lee, K. Y., Suh, P. G., Choi, W. C., Rhee, S. G., and Huang, K. P. 1987. Phosphorylation of phospholipase C enzymes by protein kinase C. Fed. Proc. 46:2286 (Abstr.)

    Google Scholar 

  120. Bennett, C. F., Angioli, M. P., and Crooke, S. T. 1987. Phosphorylation of PI-specific phospholipase C by protein kinase C in vivo. Fed. Proc. 46:2287 (Abstr.).

    Google Scholar 

  121. Leach, K. L., and Blumberg, P. M. 1985. Modulation of protein kinase C activity and [3H]phorbol 12, 13-dibutyrate binding by various tumor promotors in mouse brain cytosol. Cancer Res. 45:1958–1963.

    Google Scholar 

  122. Ramsdell, J. S., Pettit, G. R., and Tashjian, A. H. 1986. Three activators of protein kinase C, bryostatins, dioleins and phorbol esters, show differeing specificities of action on GH4 pituitary. J. Biol. Chem. 261:17073–17080.

    Google Scholar 

  123. Ahmad, Z., Lee, F. T., DePaoli-Roach, A., and Roach, P. J. 1984. Phosphorylation of glycogen synthetase by the Ca2+-and phospholipid activated protein kinase (protein kinase C). J. Biol. Chem. 259:8743–8747.

    Google Scholar 

  124. Dawson, R. M. C., Hemington, N., and Irvine, R. F. 1983. Diacylglycerol potentiates phospholipase attack upon phospholipid bilayers: possible connection with cell stimulation. Biochem. Biophys. Res. Commun. 117:196–201.

    Google Scholar 

  125. Dawson, R. M. C., Irvine, R. F., Bray, J., and Quinn, B. J. 1984. Long-chain unsaturated diacylglycerols cause a perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack. Biochem. Biophys. Res. Commun. 125:836–842.

    Google Scholar 

  126. Roach, P. J., and Goldman, M. 1983. Modification of glycogen synthase activity in isolated rat hepatocytes by tumor-promoting phorbol ester: Evidence for differential regulation of glycogen synthease and phosphorylase. Proc. Natl. Acad. Sci. (USA) 80:7170–7172.

    Google Scholar 

  127. O'Flaherty, J. T., Schmitt, J. D., McCall, C. E., and Wykle, R. L. 1984. Diacylglycerols enhance human neutrophil degranulation responses: Relevancy to a multiple mediator hypothesis of cell function. Biochem. Biophys. Res. Commun. 123:64–70.

    Google Scholar 

  128. Exton, J. H. 1986. Mechanisms involved in calcium-mobilizing agonists responses. Adv. Cyclic Nucleotide Protein Phosphorylation Res. 20:211–262.

    Google Scholar 

  129. Walaas, S. I., Horn, R. S., Adler, A., Albert, K. A., and Walaas, O. 1987. Insulin increases membrane protein kinase C activity in rat diaphragm. FEBS Lett. 220:311–318.

    Google Scholar 

  130. Klucis, K., and Polya, G. M. 1987. Calcium-independent activation of two plant leaf calcium-regulated protein kinases by unsaturated fatty acids. Biochem. Biophys. Res. Commun. 147:1041–1047.

    Google Scholar 

  131. Choy, P. C., Farren, S. B., and Vance, D. E. 1979. Lipid requirements for the aggregation of CTP-phosphocholine cytidylyltransferase in rat liver cytosol. Can. J. Biochem. 57:605–612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqui, A.A., Farooqui, T., Yates, A.J. et al. Regulation fo protein kinase C activity by various lipids. Neurochem Res 13, 499–511 (1988). https://doi.org/10.1007/BF00973288

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973288

Key Words

Navigation