Advertisement

Siberian Mathematical Journal

, Volume 7, Issue 4, pp 641–652 | Cite as

Boundary-value problems with shift on abstract Riemann surfaces

  • É. I. Zverovich
Article
  • 36 Downloads

Keywords

Riemann Surface Abstract Riemann Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. L. Rodin, Boundary-value problems of the theory of analytic functions on Riemann surfaces of finite genus, Investigations in Modern Problems of the Theory of Functions of Complex Variable, Fizmatgiz, Moscow (1960), pp. 436–445.Google Scholar
  2. 2.
    Yu. L. Rodin, Riemann boundary-value problems on closed Riemann surfaces, Investigations of Modern Problems of the Theory of Functions of Complex Variable, Fizmatgiz, Moscow (1961), pp. 419–428.Google Scholar
  3. 3.
    Yu. L. Rodin, On solvability conditions of boundary-value problems of Riemann and Hilbert on Riemann Surfaces, Dokl. Akad. Nauk SSSR,129, No. 6, 1234–1237 (1959).Google Scholar
  4. 4.
    Yu. L. Rodin, Riemann boundary-value problems with discontinuous coefficients on closed Riemann surfaces, Uch. Zapiski Permsk. Un-ta,17, No. 2, 79–85 (1960).Google Scholar
  5. 5.
    Yu. L. Rodin, Riemann boundary-value problems for differentials on closed Riemann surfaces, Uch. Zapiski Permsk. Un-ta,17, No. 2, 83–85 (1960).Google Scholar
  6. 6.
    Yu. L. Rodin, Associated Riemann boundary-value problem, Dokl. Akad. Nauk SSSR,132, No. 5, 1038–1041 (1960).Google Scholar
  7. 7.
    W. Koppelman, The Riemann-Hilbert problem for finite Riemann surfaces, Comm. Pure and Appl. Math.,12, 13–35 (1959).Google Scholar
  8. 8.
    R. N. Abdulaev, Inhomogeneous Riemann problem with discontinuous coefficients, Tr. Gruz. Politekhn. In-ta, No. 1, 31–36 (1962).Google Scholar
  9. 9.
    I. B. Simonenko, Investigation in the Theory of Singular Integrals, Boundary-Value Problems, Analytic Functions, and Singular Integral Equations, Thesis, Tbilisi, AN Gruz. SSSR (1961).Google Scholar
  10. 10.
    G. S. Litvinschuk, Some Riemann boundary-value problems with translations, Izv. Vyssh-Uch. Zavedenii, Matem., No. 6, 71–81 (1961).Google Scholar
  11. 11.
    G. S. Litvinchuk, A type of singular functional equations and boundary-value problems with shift for analytic functions, Izv. Akad. Nauk SSSR, Seriya Matem.,25, No. 6, 871–886 (1961).Google Scholar
  12. 12.
    É. G. Khasabov, Boundary-value problem of the type of Carleman problem, Izv. Vyssh. Uch. Zavedenii, Matem., No. 2, 124–133 (1963).Google Scholar
  13. 13.
    G. S. Litvinchuk and É. G. Khasabov, Theory of singular integral equations subjected to Fredholm alternative, Dokl. Akad. Nauk SSSR,140, No. 1, 48–51 (1961).Google Scholar
  14. 14.
    L. I. Chibrikova and V. S. Rogozhin, Reducing some boundary-value problems to the generalized Riemann problem, Uch. Zap. Kazansk. Un-ta,112, No. 10, 123–127 (1952).Google Scholar
  15. 15.
    F. D. Gakhov, Boundary-value Problems, Fizmatgiz, Moscow (1963).Google Scholar
  16. 16.
    I. N. Vekua, Generalized Analytic Functions, Fizmatgiz, Moscow (1959).Google Scholar
  17. 17.
    D. A. Kveselava, Some boundary-value problems of the theory of functions, Tr. Tbilissk. Matem. In-ta,16, 39–80 (1948).Google Scholar
  18. 18.
    J. Springer, Introduction to The Theory of Riemann Surfaces [Russian translation], Moscow (1963).Google Scholar
  19. 19.
    N. G. Chebotarev, Theory of Algebraic Functions, Gostekhizdat, Moscow-Leningrad (1948).Google Scholar
  20. 20.
    L. I. Volkovysskii, Quasi-conformal Mappings, L'vov Univ., L'vov (1954).Google Scholar
  21. 21.
    L. I. Volkovysskii, Problem of simply connected Riemann surfaces, Matem. Sb.,18, 185–212 (1946).Google Scholar
  22. 22.
    É. I. Zverovich, Boundary-value problems with a shift on abstract Riemann surfaces, Dokl. Akad. Nauk SSSR,157, No. 1, 26–29 (1964).Google Scholar
  23. 23.
    G. S. Litvinchuk and É. G. Khasabov, Theory of singular integral equations subjected to Fredholm alternative, Dokl. Akad. Nauk SSSR,140, No. 1, 48–51 (1961).Google Scholar
  24. 24.
    É. I. Zverovich, Boundary-value problem of the type of Carleman problem for a multiconnected domain, Matem. Sb.,64, No. 4, 618–627, (1964).Google Scholar

Copyright information

© Consultants Bureau 1967

Authors and Affiliations

  • É. I. Zverovich

There are no affiliations available

Personalised recommendations