Journal of Solution Chemistry

, Volume 24, Issue 7, pp 623–632 | Cite as

Molar heat capacities and volumes of transfer of cytosine, thymine, caffeine and 1,3-diethylthymine to aqueous solutions of glycyl-glycine and L-α-alanyl-L-α-alanine at 25°C

  • A. Zielenkiewicz
  • K. Busserolles
  • G. Roux-Desgranges
  • A. H. Roux
  • J-P. E. Grolier
  • W. Zielenkiewicz


Densities and specific heat capacities of ternary aqueous systems containing dipeptides (glycyl-glycine or L-α-alanyl-L-α-alanine) and nucleic acid bases (cytosine or thymine) or their alkyl derivatives (1,3-diethylthymine or caffeine) were determined at 25°C by flow calorimetry and flow densimetry. The partial molar volumes and heat capacities of transfer at infinite dilution of the different nucleic acid bases from water to water+dipeptide solutions were obtained therefrom. Except for the case of the transfer of cytosine to aqueous glycyl-glycine solutions where a small positive dependence of the transfer quantities was observed with the dipeptide concentration, the values of the heat capacities of transfer were in general low, positive or negative, depending on the compensation of hydrophobic-hydrophilic interactions between the dipeptide and the base. The volumes of transfer of most of the bases are very small, within the limit of the experimental error.

Key Words

Partial molar heat capacity partial molar volume nucleic acid bases cytosine thymine 1,3-diethylthymine caffeine dipeptides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Szeminska, W. Zielenkiewicz, and K. L. Wierzchowski,Biophys. Chem. 10, 409 (1979).Google Scholar
  2. 2.
    J-P. E. Grolier, A. H. Roux, G. Roux-Desgranges, I. Tomaszkiewicz, and W. Zielenkiewicz,Thermochim. Acta 176, 141 (1991).Google Scholar
  3. 3.
    W. Zielenkiewicz, A. Zielenkiewicz, J-P. E. Grolier, A.H. Roux, and G. Roux-Desgranges,J. Solution Chem. 21, 1 (1992).Google Scholar
  4. 4.
    A. Zielenkiewicz, M. Draminski, G. Roux-Desgranges, A. H. Roux, I. Kulis, J-P. E. Grolier, and W. Zielenkiewicz,Bull. Pol. Acad. Sci. Chem. 40, 203 (1992).Google Scholar
  5. 5.
    A. Zielenkiewicz, G. Roux-Desgranges, A. H. Roux, J-P. E. Grolier, K. L. Wierzchowski, and W. Zielenkiewicz,J. Solution Chem. 22, 907 (1993).Google Scholar
  6. 6.
    T. L. Gilchrist,Heterocyclic Chemistry, 2nd Edition, (Longman Scientific Technical, England 1992).Google Scholar
  7. 7.
    Biochemistry of Peptide Antibiotics, ed. Kleinhanf Von Döhren, (Walter de Gryter, Berlin, 1990).Google Scholar
  8. 8.
    P. Picker, P. A. Leduc, P. P. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).Google Scholar
  9. 9.
    J. L. Fortier and G. C. Benson,J. Chem. Thermodyn. 8, 411 (1976).Google Scholar
  10. 10.
    P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).Google Scholar
  11. 11.
    C. Jolicoeur and J. Boileau,Can. J. Chem. 56, 2707 (1978).Google Scholar
  12. 12.
    R. Bhat and J. C. Ahluwalia,J. Phys. Chem. 89, 1099 (1985).Google Scholar
  13. 13.
    J. F. Reading and G. R. Hedwig,J. Solution. Chem.,18, 159 (1989).Google Scholar
  14. 14.
    M. Iqbal and R. E. Verrall,J. Phys. Chem. 91, 967 (1987).Google Scholar
  15. 15.
    O. V. Kulikov, K. A. Koslov, L. I. Malenkina, and V. S. Badelin,Thermodynamics of Nonelectrolyte Solutions (in Russian), ed. Academy of Sciences USSR, Institute of Chemistry of Nonaqueous Solutions, Ivanovo, 36 (1989).Google Scholar
  16. 16.
    N. Kishore, R. Bhat, and J. C. Ahluwalia,Biophys. Chem.,33, 227 (1989).Google Scholar
  17. 17.
    A. Zielenkiewicz, W. Zielenkiewicz, and S. Malanowski,Thermochim. Acta 74 95 (1984).Google Scholar
  18. 18.
    M. Kilday,J. Research of NBS 83, 529 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Zielenkiewicz
    • 1
  • K. Busserolles
    • 2
  • G. Roux-Desgranges
    • 2
  • A. H. Roux
    • 2
  • J-P. E. Grolier
    • 2
  • W. Zielenkiewicz
    • 1
  1. 1.Institute of Physical Chemistry of the Polish Academy of SciencesWarszawaPoland
  2. 2.Laboratoire de Thermodynamique et Génie Chimique, URA CNRS 434Université Blaise PascalAubiere CedexFrance

Personalised recommendations