Journal of Solution Chemistry

, Volume 24, Issue 6, pp 523–535 | Cite as

Interdiffusion without a common ion in aqueous NaCl−MgSO4 and LiCl−NaOH mixed electrolytes

  • Ling Hao
  • Derek G. Leaist
Article

Abstract

When a solution of electrolyte MX interdiffuses with a solution of electrolyte NY, the transport of four different ions (M, X, N, and Y) is constrained only by electroneutrality. Because three degrees of freedom remain, the interdiffusion of two electrolytes without a common ion can produce an independent flow of a third electrolyte. This behavior is demonstrated by using Taylor dispersion to measure interdiffusion coefficients, including cross-coefficients, for NaCl−MgSO4-water and LiCl−NaOH-water mixed electrolytes at 25°C. The measurements are made for electrolyte mole ratios of 0∶1, 1∶3, 1∶1, 3∶1, and 1∶0 at a total electrolyte concentration of 0.100 mol L−1. The results are used to calculate concentration profiles across NaCl(aq)/MgSO4(aq) and LiCl(aq)/NaOH(aq) liquid junctions. The interdiffusion of NaCl and MgSO4 produces relatively small flows of Na2SO4. As a result of large differences in ionic mobilities for the aqueous LiCl−NaOH system, substantial flows of NaCl develop during the interdiffusion of LiCl and NaOH.

Key Words

Diffusion multicomponent diffusion coefficients liquid junctions mixed electrolytes Taylor dispersion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Dunlop,J. Am. Chem. Soc. 77, 2994 (1955).Google Scholar
  2. 2.
    H. Kim, G. Reinfelds and L. J. Gosting,J. Phys. Chem. 77, 934 (1973).Google Scholar
  3. 3.
    D. G. Miller, A. W. Ting and J. A. Rard,J. Electrochem. Soc. 135, 896 (1988).Google Scholar
  4. 4.
    R. Mathew, L. Paduano, J. G. Albright, D. G. Miller and J. A. Rard,J. Phys. Chem. 93, 4370, (1989).Google Scholar
  5. 5.
    D. G. Leaist,Electrochim. Acta 33, 795, (1988).Google Scholar
  6. 6.
    E. L. Cussler,Multicomporient Diffusion (Elsevier, Amsterdam, 1976), p. 66.Google Scholar
  7. 7.
    R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn. (Academic Press, New York, 1959).Google Scholar
  8. 8.
    D. G. Leaist,J. Chem. Soc., Faraday Trans. 1 83, 829 (1987).Google Scholar
  9. 9.
    A. Alizadeh, C. A. Nieto de Castro and W. A. Wakeham,Int. J. Thermophys. 1, 243 (1980).Google Scholar
  10. 10.
    D. G. Leaist,J. Chem. Soc., Faraday Soc. 76, 597 (1991).Google Scholar
  11. 11.
    D. G. Leaist and L. Hao,J. Solution Chem. 22, 263 (1993).Google Scholar
  12. 12.
    D. G. Leaist,Ber. Bunsenges. Phys. Chem. 89, 786, (1985).Google Scholar
  13. 13.
    R. A. Noulty and D. G. Leaist,J. Phys. Chem. 91, 1655 (1987).Google Scholar
  14. 14.
    D. G. Leaist,J. Chem. Soc., Faraday Trans. 88, 2897 (1992).Google Scholar
  15. 15.
    D. G. Leaist,J. Chem. Soc., Faraday Trans. 1 84, 581 (1988).Google Scholar
  16. 16.
    H. Lu and D. G. Leaist,J. Chem. Soc., Faraday Trans. 87, 3667 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Ling Hao
    • 1
  • Derek G. Leaist
    • 1
  1. 1.Department of ChemistryUniversity of Western OntarioLondonCanada

Personalised recommendations