Skip to main content
Log in

Sodium channel activation does not alter lipid metabolism in cultured neuroblastoma cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The interaction of voltage-sensitive Na+-channels and membrane lipid metabolism was examined by incubating cultured neuroblastoma cells with neurotoxins which alter the voltage-dependent relationship between the closed and open conformation of the channel protein. Guanidinium flux rate, a measure of Na+-channel activation, was increased 10-fold by the combined action of veratridine (100 μM) and scorpion venom (28 μg/ml). This response was completely blocked by tetrodotoxin (1 μM). Under the same experimental conditions, the toxins did not increase the efflux of [3H]arachidonic acid from prelabeled cell membrane lipids or stimulate uptake of exogenous [3H]arachidonic acid. In addition, altering membrane fatty acid composition by incubating cells for 24 hr in a medium containing 50 μM arachidonic or oleic acid did not alter guanidinium flux rates relative to that of control cultures. When cells were pulsed with32Pi for 60 min and stimulated by veratridine plus scorpion venom for an additional 30 min, uptake of32Pi into phosphatidylinositol as reduced; stimulating cells with bradykinin, a receptor agonist which activates the inositol cycle, promoted a 3.8 fold increase. Polyphosphoinositide turnover was not affected by Na+-channel activation, but was stimulated by bradykinin. These results suggest that voltage-sensitive Na+-channel activation in cultured neuroblastoma cells can function independent of membrane phospholipid and fatty acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spector, A. A., and Yorek, M. A. 1985. Membrane lipid composition and cellular function. J. Lipid Res. 26:1015–1035.

    PubMed  Google Scholar 

  2. Stubbs, C. D., and Smith, A. D. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta. 779:89–137.

    PubMed  Google Scholar 

  3. Williams, T. P., and McGee, R. 1982. The effects of membrane fatty acid modification of clonal pheochromocytoma cells on depolarization-dependent exocytosis. J. Biol. Chem. 257:3491–3500.

    PubMed  Google Scholar 

  4. Berridge, M. J., and Irvine, R. F. 1984. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature. 312:315–321.

    PubMed  Google Scholar 

  5. Hanahan, D. J. 1986. Platelet activating factor: a biologically active phosphoglyceride. Ann. Rev. Biochem. 55:483–509.

    PubMed  Google Scholar 

  6. Needleman, P., Turk, J., Jakschik, B. A., Morrison, A. R., and Lefkowith, J. B. 1986. Arachidonic acid metabolism. Ann. Rev. Biochem. 55:69–102.

    PubMed  Google Scholar 

  7. Johnson, M., Carey, F., and McMillan, R. M. 1983. Alternative pathways of arachidonate metabolism: prostaglandins, thromboxanes and leukotrienes. Essays Biochem. 19:40–141.

    PubMed  Google Scholar 

  8. Catterall, W. A. 1977. Activation of the action potential Na+ ionophore by neurotoxins: An allosteric model. J. Biol. Chem. 252:8669–8676.

    PubMed  Google Scholar 

  9. Catterall, W. A. 1980. Neurotoxins that act on voltage-sensitive sodium channels. Ann. Rev. Pharmacol. 20:15–43.

    Google Scholar 

  10. Catterall, W. A. 1986. Voltage-dependent gating of sodium channels: correlating structure and function. Trends Neuro. Sci. 9:7–10.

    Google Scholar 

  11. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inavama, S., Hayashida, H., Miyata, T., and Numa, S. 1984. Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312:121–127.

    PubMed  Google Scholar 

  12. Glanville, N. T., Cook, H. W., and Spence, M. W. 1987. Compartmentation of phosphorylated precursors of phospholipid biosynthesis in cultured neuroblastoma cells. Biochim. Biophys. Acta. 904:392–400.

    PubMed  Google Scholar 

  13. Reiser, G., Gunther, A., and Hamprecht, B. 1983. Blockade by neurotransmitter antagonists of veratridine-activated ion channels in neuronal cell lines. J. Neurochem. 40:493–502.

    PubMed  Google Scholar 

  14. Folch, J., Lees, M., and Sloane-Stanley, G. H. A. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509.

    PubMed  Google Scholar 

  15. Chakravarthy, B. R., Spence, M. W., Clarke, J. T. R., and Cook, H. W. 1985. Rapid isolation of neuroblastoma plasma membranes on Percoll gradients. Characterization and lipid composition. Biochim. Biophys. Acta. 812:223–233.

    PubMed  Google Scholar 

  16. Palmer, F. B. St. C. 1977. The enzymatic preparation of diphosphoinositides. Preparative Biochem. 7:457–465.

    Google Scholar 

  17. Sun, G. Y., and Horrocks, L. A. 1969. The metabolism of palmitic acid in the phospholipids, neutral glycerides and galactolipids of mouse brain. J. Neurochem. 16:181–187.

    PubMed  Google Scholar 

  18. Morrison, W. R., and Smith, L. M. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron flouride-methanol. J. Lipid Res. 5:600–608.

    Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  20. Osugi, T., Uchida, S., Imaizumi, T., and Yoshida, H. 1986. Bradykinin-induced intracellular Ca2+ elevation in neuroblastoma×glioma hybrid NG108-15 cells; Relationship to the action of inositol phospholipid metabolites. Brain Res. 379:84–89.

    PubMed  Google Scholar 

  21. Saum, W. R., McGee, R., and Love, J. 1981. Alteration of the action potential of tissue cultured neuronal cells by growth in the presence of a polyunsaturated fatty acid. Cell. Mol. Neurobiol. 1:319–324.

    PubMed  Google Scholar 

  22. Love, J. A., Saum, W. R., and McGee, R. 1985. The effects of exposure to exogenous fatty acids and membrane fatty acid modification on the electrical properties of NG108-15 cells. Cell. Mol. Neurobiol. 5:333–352.

    PubMed  Google Scholar 

  23. Schmidt, J. W., and Catterall, W. A. 1987. Palmitylation, sulfation, and glycosylation of the subunit of the sodium channel. Role of post-translational modifications in channel assembly. J. Biol. Chem. 262:13713–13723.

    PubMed  Google Scholar 

  24. Feller, D. J., Talvenheimo, J. A., and Catterall, W. A. 1985. The sodium channel from rat brain. Reconstitution of voltage-dependent scorpion toxin binding in vesicles of defined lipid composition. J. Biol. Chem. 260:11542–11547.

    PubMed  Google Scholar 

  25. Tamkun, M. M., Talvenheimo, J. A., and Catterall, W. A. 1984. The sodium channel from rat brain: Reconstitution of neurotoxin-activated ion flux and scorpin toxin binding from purified components. J. Biol. Chem. 259:1676–1688.

    PubMed  Google Scholar 

  26. McGee, R. 1981. Membrane fatty acid modification of the neuroblastoma×glioma hybrid, NG108-15. Biochim. Biophys. Acta. 663:314–328.

    PubMed  Google Scholar 

  27. Waechter, C. J., Schmidt, J. W., and Catterall, W. A. 1983. Glycosylation is required for maintenance of functional sodium channels in neuroblastoma cells. J. Biol. Chem. 258:5117–5123.

    PubMed  Google Scholar 

  28. Chakravarthy, B. R., Spence, M. W., and Cook, H. W. 1986. Turnover of phospholipid fatty acyl chains in cultured neuroblastoma cells: involvement of deacylation-reacylation and de novo synthesis in plasma membrane. Biochim. Biophys. Acta 879:264–277.

    PubMed  Google Scholar 

  29. Sastry, P. S. 1985. Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24:69–176.

    PubMed  Google Scholar 

  30. Gusovsky, F., Hollingsworth, E. B., and Daly, J. W. 1986. Regulation of phosphatidylinositol turnover in brain synaptoneurosomes: Stimulatory effects of agents that enhance influx of sodium ions. Proc. Natl. Acad. Sci. USA 83:3003–3007.

    PubMed  Google Scholar 

  31. Gusovsky, F., McNeal, E. T., and Daly, J. W. 1986. Stimulation of phosphoinositide breakdown in brain synaptoneurosomes by agents that activate sodium influx. Antagonism by tetrodotoxin, saxitoxin and cadmium. Mol. Pharmacol. 32:479–487.

    Google Scholar 

  32. Salway, J. G., and Hughes, I. E. 1972. An investigation of the possible role of phosphoinositides as regulators of action potentials by studying the effect of electrical stimulation, tetrodotoxin and cinchocaine on phosphoinositide labelling by32P in rabbit vagus. J. Neurochem. 19:1233–1240.

    PubMed  Google Scholar 

  33. Jacques, Y., Fosset, M., and Lazdunski, M. 1978. Molecular properties of the action potential Na+ ionophore in neuroblastoma cells. J. Biol. Chem. 253:7383–7392.

    PubMed  Google Scholar 

  34. DeLatt, S. W., Bluemink, J. G., Boonstra, J., Mummery, C. L., Van Der, Saag P. T. and Van Zollen, E. J. J. 1984. Membrane fluidity in growth and differentiation; the neuroblastoma cell model., in Physiology of Membrane Fluidity, v. 2. (Shinitzky, M., ed) pp. 21–53, CRC Press Inc, Boca Raton, Florida.

    Google Scholar 

  35. Cau, P., Massacrieer, A., Boudier, J. L., and Couraud, F. 1985. Ultrastructural localization of voltage-sensitive sodium channels using [125I] scorpion toxin. Brain Res. 334:9–17.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glanville, T.N., Spence, M.W., Cook, H.W. et al. Sodium channel activation does not alter lipid metabolism in cultured neuroblastoma cells. Neurochem Res 13, 1015–1021 (1988). https://doi.org/10.1007/BF00973144

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973144

Key Words

Navigation