Skip to main content
Log in

Ionic association and mobility. III. Ionophores in propylene carbonate at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductance data are reported for (CH3)4NPF6, (C2H5)4NPF6, PyrHPic, (CH3)4NBF4, and (C7H15)4NPic in propylene carbonate at 25°C in the concentration range (4–16)×10−4 M. The data for salts other than (C2H5)4NPF6 were analyzed by the Justice modification of the Fuoss-Hsia equation and these salts were found to be associated and to form solvent separated ion pairs. The data for (C2H5)4NPF6 which was found to be nonassociated were analyzed by use of the Fuoss-Onsager equation. Application of the Justice-Barthel procedure permitted calculation of the nonCoulombic contribution to the association process. Ionic limiting conductances of several ions were calculated by using known ionic limiting conductances of R4N+ and Pic ions and molar conductances reported here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Covington and T. Dickinson,Physical Chemistry of Organic Solvent Systems, (Plenum Press, London 1973).

    Google Scholar 

  2. W. S. Harris,Ph. D. Thesis, University of California, 1958.

  3. R. S. Jasinski,Advances in Electrochemistry and Electrochemical Engineering, ed., C. W. Tobias, Vol. 8, (Wiley, 1971).

  4. W. H. Lee,Chemistry of Nonaqueous Solvents J. J. Lagowski, ed., Vol 4, New York, (Academic Press, 1976) chap 6.

    Google Scholar 

  5. H. V. Venkatasetty,Lithium Battery Technology H. V. Venkatasetty, eds, (Electrochemical Society, Pennington, N.J. 1984, chap 1.

    Google Scholar 

  6. J. F. Reardon,Electrochim. Acta 32, 1595 (1987).

    Google Scholar 

  7. P. M. McDonagh and J. F. Reardon,J. Chem. 19, 301 (1990).

    Google Scholar 

  8. R. M. Fuoss and E. Hirsch,J. Am. Chem. Soc. 82, 1013, (1960).

    Google Scholar 

  9. R. M. Fuoss and K. L. Hsia,Proc. Natl. Acad. Sci. U.S.A. 57, 1550 (1967).

    Google Scholar 

  10. R. Fernandez-Prini, inPhysical Chemistry of Organic Solvent Systems eds., A. K. Covington and J. Dickinson (Plenum Press, New York 1973), p. 565.

    Google Scholar 

  11. J. C. Justice,J. Chim. Phys 65, 353 (1968).

    Google Scholar 

  12. T. Shedlovsky,J. Franklin Inst. 225, 739 (1938).

    Google Scholar 

  13. N. N. Lichtin, B. Wasserman, and J. F. Reardon,J. Phys. Chem. 86, 1590 (1981).

    Google Scholar 

  14. M. Salomon and E. J. Plichta,Electrochim. Acta 28, 1681 (1983);29, 731 (1984); 30, 113 (1985).

    Google Scholar 

  15. R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).

    Google Scholar 

  16. R. Zana, J. E. Desnoyers, G. Parron, R. L. Kay and K. LeeJ. Phys. Chem. 86, 3996 (1982).

    Google Scholar 

  17. J. Barthel, R. Wachter, and H. J. Gores,Modern Aspects of Electrochemistry ed; B. Conway and J. O'M. Bockris, 13, (Plenum Press, New York (1979).

    Google Scholar 

  18. J. C. Coupez and M. L'Mer,C. R. Acad. Sci. Ser. C,271, 357 (1970).

    Google Scholar 

  19. M. Spiro, see Ref. 10,in, p. 678.

    Google Scholar 

  20. R. H. Boyd,J. Chem. Phys. 35, 1281 (1961);39, 2376 (1963).

    Google Scholar 

  21. R. Zwanzig,J. Chem. Phys. 52, 3625 (1970).

    Google Scholar 

  22. J. B. Hubbard and L. Onsage,J. Chem. Phys. 67, 4850 (1977).

    Google Scholar 

  23. J. B. Hubbard,J. Chem. Phys. 68, 1649 (1978).

    Google Scholar 

  24. J. B. Hubbard and R. F. Kayser,J. Chem. Phys. 74, 3635 (1981).

    Google Scholar 

  25. P. J. Stiles,Chem. Phys. Lett. 80, 73 (1981).

    Google Scholar 

  26. J. B. Hubbard and R. F. Kayser,Chem. Phys. 66, 377 (1982).

    Google Scholar 

  27. P. J. Stiles, J. B. Hubbard, and R. F. Kayser,J. Chem. Phys. 77, 6189 (1982).

    Google Scholar 

  28. J. H. Chen and S. A. Adelman,J. Chem. Phys. 72, 2819 (1980).

    Google Scholar 

  29. J. N. Butler,J. Electroanal. Chem. 14, 89 (1967).

    Google Scholar 

  30. E. Plichta, M. Salomon, S. Slane, M. Uchiyama,J. Solution. Chem. 15, 663 (1986).

    Google Scholar 

  31. M. Salomon,Electrochim. Acta,30, 1021 (1985).

    Google Scholar 

  32. J. Barthel, H. J. Gores, G. Schmeer, and R. Wachter,Topics in Current Chemistry, Vol. III (Springer-Verlag, Heidelberg, 1982) p. 114.

    Google Scholar 

  33. J. Barthel,Pure and Applied Chem. 57, 355 (1985).

    Google Scholar 

  34. M. Ue,Electrochim Acta 39, 2083 (1994).

    Google Scholar 

  35. M. Ue,J. Electrochem. Soc. 141, 3336 (1994).

    Google Scholar 

  36. M. L. Jensen and H. L. Yeager,J. Phys. Chem. 77, 3089 (1973);78, 1380 (1974).

    Google Scholar 

  37. N. Matsuura, K. Umemoto, and Y. Takheda,Bull. Chem. Soc. Jap. 48, 2253 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonagh, P.M., Reardon, J.F. Ionic association and mobility. III. Ionophores in propylene carbonate at 25°C. J Solution Chem 25, 607–614 (1996). https://doi.org/10.1007/BF00973089

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973089

Key Words

Navigation