Skip to main content
Log in

Thermodynamics of nucleic acid bases and nucleosides in water from 25 to 55°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Specific heat capacities, apparent molar heat capacities, densities, and apparent molar volumes have been determined for cytosine, uracil, thymine, adenine, cytidine, 2′-deoxycytidine, uridine, thymidine and adenosine at temperatures from 25°C to 55°C. The results of these measurements have been used to calculate for the first time, the thermodynamic quantities:C op,2 , (∂C op,2 /∂T)p, (∂2 C op,2 T 2)p,V o2 , (∂V o2 /∂T)p, and (∂2 V o2 /∂T 2)p. The-CH2-group contribution has been calculated at different temperatures. It has also been observed from the data for the nucleic acid bases and nucleosides that the additivity ruleC op,2 (nucleoside)-C op,2 (base) +C op,2 (water)=C op,2 (ribose) does not hold in these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Scruggs, E. K. Achter, and P. D. RossBiopolymers 11, 1961 (1972).

    Google Scholar 

  2. J. Alvarez and R. Biltonen,Biopolymers 12, 1815 (1973).

    Google Scholar 

  3. T. T. Herskovits, S. J. Singer, and E. P. Geiduschek,Arch. Biochem. Biophys. 94, 99 (1961).

    Google Scholar 

  4. G. K. Helmkamp and P. O. P. Ts'O,J. Am. Chem. Soc. 83, 138 (1961).

    Google Scholar 

  5. K. J. Breslauer, J. C. M. Bodnar, and J. E. McCarthyBiophy. Chem. 9, 71 (1978).

    Google Scholar 

  6. F. E. Jones,J. Res. Natl. Bur. Stand. (U.S.) 83, 419 (1978).

    Google Scholar 

  7. N. Kishore, R. N. Goldberg, and Y. B. Tewari,J. Chem. Thermodynamics 25, 847 (1993).

    Google Scholar 

  8. D. G. ArcherJ. Phys. Chem. Ref. Data 21, 793 (1992).

    Google Scholar 

  9. P. G. Hill,J. Phys. Chem. Ref. Data 19, 1233 (1990).

    Google Scholar 

  10. M. V. Kilday,J. Res. Natl. Bur. Stand. 83, 539 (1978).

    Google Scholar 

  11. N. Kishore, R. Bhat, and J. C. AhluwaliaBiophys. Chem. 33, 227 (1989).

    Google Scholar 

  12. J. K. Ahmed, G. A. W. Derwish, and F.I. Kanbour,J. Solution Chem. 6, 343 (1981).

    Google Scholar 

  13. M. V. KildayJ. Res. Natl. Bur. Stand. 83, 529 (1978).

    Google Scholar 

  14. J. H. Stern and L. P. Swanson,J. Chem. Eng. Data 30, 61 (1985).

    Google Scholar 

  15. R. W. GurneyIonic Processes in Solution (McGraw Hill, New York, 1953).

    Google Scholar 

  16. H. S. Frank and M. W. EvansJ. Chem. Phys. 13, 507 (1945).

    Google Scholar 

  17. J. Szeminske, W. Zielenkiewicz, and K. L. WierchowskiBiophys. Chem. 10, 409 (1979).

    Google Scholar 

  18. H. Hoiland, A. Skauge and I. StokkelandJ. Phys. Chem. 88, 6350 (1984).

    Google Scholar 

  19. J. H. Stern and D. R. Oliver,J. Chem. Eng. Data 25, 221 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.G., Kishore, N. Thermodynamics of nucleic acid bases and nucleosides in water from 25 to 55°C. J Solution Chem 24, 25–38 (1995). https://doi.org/10.1007/BF00973047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973047

Key words

Navigation