Skip to main content
Log in

Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sustained hyperammonemia resulting from portocaval anastomosis (PCA) in the rat, is accompanied by neurological symptoms and reversible morphological changes in brain, the nature and distribution of which suggest selective vulnerability of certain brain structures. the present study was initiated to investigate the effects of increasing CNS ammonia on the distribution of amino acids in regions of the rat brain in relation to the degree of neurological impairment in PCA rats. Four weeks following PCA, rats were administered ammonium acetate (5.2 mmol/kg, i.p.) to precipitate neurological symptoms of encephalopathy which included diminished locomotor activity, loss of hindlimb extension and righting reflexes and ultimately coma. At various stages during the development of encephalopathy, rats were sacrificed and the amino acids glutamine, glutamate and aspartate measured simultaneously, using a sensitive double-isotope dansyl microassay. Homogenates of the following regions of the CNS were assayed: cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla-pons, spinal cord (gray matter) and spinal cord (white matter). Sustained hyperammonemia associated with PCA alone resulted in a non-uniform 2–4 fold increase of glutamine in all regions of the CNS. Glutamate, on the other hand, was selectively increased in striatum and cerebellum, two regions of brain shown to exhibit early morphologically-characterised astrocytic abnormalities in rats with PCA. Onset of severe neurological dysfunction was accompanied by significantly decreased glutamine and glutamate in striatum and cerebellum. Thus, sustained hyperammonemia in association with portocaval shunting results in region-selective effects with respect to glutamine-glutamate metabolism in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plum, F., andHindfelt, B. 1976. The neurological complications of liver disease. Pages 349–377,in Vinken, P. J., andBruyn, G. W. (eds.), Metabolic and Deficiency Diseases of the Nervous System, Part I, American Elsevier, New York.

    Google Scholar 

  2. Ehrlich, M., Plum, F., andDuffy, T. E. 1980. Blood and brain ammonia concentrations after portocaval anastomosis-effects of acute ammonia loading. J. Neurochem. 34:1538–1542.

    Google Scholar 

  3. Hindfelt, B., Plum, F., andDuffy, T. E. 1977. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Invest. 59:386–396.

    Google Scholar 

  4. Holmin, T., andSiesjo, B. K. 1974. The effect of porta-caval anastomosis upon the energy state and upon acid-base parameters of the rat brain. J. Neurochem. 22:403–412.

    Google Scholar 

  5. Norenberg, M. D. 1977. A light and electron microscopic study of experimental portalsystemic (ammonia) encephalopathy. Lab. Invest. 36:618–627.

    Google Scholar 

  6. Lee, S. H., andFisher, B. 1961. Portacaval shunt in the rat. Surgery 50:668–672.

    Google Scholar 

  7. Bucci, L., Cardelli, M., Chiavarelli, R., Massotti, M., andMorisi, G. 1980. Behavioral, electroencephalographic and biochemical changes in porta-caval shunted rats. Int. J. Neurosci. 10:129–134.

    Google Scholar 

  8. Lee, S. H., Chandler, J. G., Broelsch, C. E., Flamant, Y. M., andOrloff, M. J. 1974. Portal-systemic anastomosis in the rat. J. Surg. Res. 17:53–73.

    Google Scholar 

  9. Jolicoeur, F. B., Rondeau, D. B., Hamel, E., Butterworth, R. F., andBarbeau, A. 1979. Measurement of ataxia and related neurological signs in the rat. Can. J. Neurol. Sci. 6:209–215.

    Google Scholar 

  10. Glowinski, J., andIversen, L. L. 1966. Regional studies of catecholamines in the rat brain. I. The disposition of3H-norepinephrine,3H-dopamine and3H-dopa in various regions of the brain. J. Neurochem. 13:655–669.

    Google Scholar 

  11. Butterworth, R. F., Merkel, A. D., andLandreville, F. 1982. Regional amino acid distribution in relation to function in insulin hypoglycaemia. J. Neurochem. 38:1483–1489.

    Google Scholar 

  12. Chapman, A. G., Riley, K., Evans, M. C., andMeldrum, B. S. 1982. Acute effects of sodium valproate and γ-vinyl GABA on regional amino acid metabolism in the rat brain: Incorporation of 2-14C-glucose into amino acids. Neurochem. Res. 7:1089–1105.

    Google Scholar 

  13. Kun, E., andKearney, E. B. 1974. Ammonia. Pages 1802–1806,in Berkmeyer, H. V. (ed.), Methods of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  14. Winer, B. J. 1971. Statistical Principles in Experimental Design, McGraw-Hill, New York.

    Google Scholar 

  15. Zanchin, G., Rigotti, P., Dussini, N., Vassanelli, P., andBattistin, L. 1972. Chrebral amino acid levels and uptake in rats after portocaval anastomosis: II. Regional studies in vivo. J. Neurosci. Res. 4:301–310.

    Google Scholar 

  16. Cavanagh, J. B., Lewis, P. D., Blakemore, W. F., andKyu, M. H. 1972. Changes in the cerebellar cortex in rats after portacaval anastomosis. J. Neurol. Sci. 15:13–26.

    Google Scholar 

  17. Zamora, A. J., Cavanagh, J. B., andKyu, M. H. 1973. Ultrastructural responses of the astrocytes to portocaval anastomosis in the rat. J. Neurol. Sci. 18:25–45.

    Google Scholar 

  18. Warbritton, J. D., Geyer, M. A., Jeppsson, B. W., andFischer, J. E. 1979. Behavioral model of early hepatic encephalopathy in rats. Surgical Forum 30:394–396.

    Google Scholar 

  19. Beaubernard, C., Salomon, F., Grange, D., Thangapregassam, M. J., andBismuth, J. 1977. Experimental hepatic encephalopathy. Changes of the level of wakefulness in the rat with portacaval shunt. Biomedicine 27:169–171.

    Google Scholar 

  20. Zieve, L. 1982. Hepatic Encephalopathy. Pages 433–459,in Schiff, E., andSchiff, E. R. (eds.), Diseases of The Liver (5th Ed.), Lippincott, Philadelphia.

    Google Scholar 

  21. Giguère, J. F., andButterworth, R. F. 1982. Glutamic acid abnormalities in the central nervous system in hepatic encephalopathy. Clin. Biochem. 15:95.

    Google Scholar 

  22. Weiser, M., Riederer, P., andKleinberger, G. 1978. Human cerebral free amino acids in hepatic coma. J. Neural Trans. (Suppl.) 14:95–102.

    Google Scholar 

  23. Hamberger, A., Jacobsson, I., Molin, S. O., Nystrom, B., andSandberg, M. 1981. Regulation of giutamate biosynthesis and release by pathophysiological levels of ammonium ions. Pages 115–126,in Di Chiara, G., andGessa, G. L. (eds.), Glutamate as a Neurotransmitter, Raven Press, New York.

    Google Scholar 

  24. Norenberg, M. D. 1979. The distribution of glutamine synthetase in the rat central nervous system. J. Histochem. Cytochem. 27:756–762.

    Google Scholar 

  25. Cooper, A. J. L., Vergara, F., andDuffy, T. E. 1983. Cerebral glutamine synthetase. Pages 77–93,in Hertz, L., Kvamme, E., McGeer, E. G., andSchousboe, A. (eds.), Glutamine, Glutamate and Gaba in the Central Nervous System, Alan R. Liss, New York.

    Google Scholar 

  26. Kvamme, E., andLenda, K. 1982. Regulation of glutaminase by exogenous glutamate, ammonia and 2-oxoglutarate in synaptosomal enriched preparation from rat brain. Neurochem. Res. 7:667–677.

    Google Scholar 

  27. Moroni, F., Lombardi, G., Moneti, G., andCortesini, C. 1983. The release and neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy. J. Neurochem. 40:850–854.

    Google Scholar 

  28. Cardelli-Cangiano, P., Cangiano, C., James, J. H., Jeppsson, B., Brenner, W., andFischer, J. E. 1981. Uptake of amino acids by brain microvessels isolated from rats after portacaval anastomosis. J. Neurochem. 36:627–632.

    Google Scholar 

  29. Tossman, U., Eriksson, S., Delin, A., Hagenfeldt, L., Law, D., andUngerstedt, U. 1983. Brain amino acids measured by intracerebral dialysis in portacaval shunted rats. J. Neurochem. 41:1046–1051.

    Google Scholar 

  30. Benjamin, A. M. 1983. Ammonia in metabolic interactions between neurons and glia. Pages 399–414,in Hertz, L., Kvamme, E., McGeer, E. G., andSchousboe, A. (eds.), Glutamine, Glutamate and Gaba in the Central Nervous System, Alan R. Liss, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giguère, JF., Butterworth, R.F. Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy. Neurochem Res 9, 1309–1321 (1984). https://doi.org/10.1007/BF00973042

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973042

Keywords

Navigation