Skip to main content
Log in

The distribution and turnover of tryptamine in the brain and spinal cord

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tryptamine levels have been determined in mouse brain regions and spinal cord and in rat spinal cord. They were; caudate nucleus 2.5 ng·g−1, hypothalamus <0.5 ng·g−1, hippocampus <0.7 ng·g−1, olfactory bulb <0.7 ng·g−1, olfactory tubercles <0.6 ng·g−1, brain stem <0.4 ng·g−1, cerebellum <1.0 ng·g−1, and the “rest” 0.9 ng·g−1. The mouse whole brain was found to have 0.5 ng·g−1, the mouse spinal cord 0.3 ng·g−1, and the rat spinal cord 0.3 ng·g−1. These concentrations increased rapidly to 22.8 ng·g−1, 14.2 ng·g−1, and 6.6 ng·g−1 respectively at 1 hr after 200 mg·kg−1 pargyline. The turnover rates and half lives of tryptamine in the mouse brain and spinal cord and rat spinal cord were estimated to be 0.14 nmol·g−1·h−1 and 0.9 min; 0.054 nmol·g−1·h−1 and 1.5 min and 0.04 nmol·g−1·h−1 and 1.6 min respectively. The aromaticl-aminoacid decarboxylase inhibitors NSD 1034 and NSD 1055 reduced synthesis of tryptamine in controls and pargyline pretreated animals. Tryptophan increased the concentrations of mouse striatal tryptamine and 5-hydroxytryptamine and brain stem 5-hydroxyindole acetic acid.p-Chlorophenylalanine reduced formation of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid but did not change that of tryptamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hess, S. M., andUdenfriend, S. 1959. A fluorimetric procedure for the measurement of tryptamine in tissues. J. Pharmac. Exp. Ther. 127:175–177.

    Google Scholar 

  2. Eccleston, D., Ashcroft, G. W., Crawford, T. B. B., andLoose, R. 1966. Some observations on the estimation of tryptamine in tissues. J. Neurochem. 13:93–101.

    Google Scholar 

  3. Martin, W. R., Sloan, J. W., Christian, S. T., andClements T. H. 1972. Brain levels of tryptamine. Psychopharmacol. 23:331–346.

    Google Scholar 

  4. Saavedra, J. M., andAxelrod, J. 1972. A specific and sensitive enzymatic assay for tryptamine in tissues. J. Pharmacol. Exp. Ther. 182:363–369.

    Google Scholar 

  5. Snodgrass, S. R., andHorn, A. S. 1973. An assay procedure for tryptamine in brain and spinal cord using its [3H]dansyl derivative. J. Neurochem. 21:687–696.

    Google Scholar 

  6. Marsden, C. A., andCurzon, G. 1974. Effects of lesions and drugs on brain tryptamine. J. Neurochem. 23:1171–1176.

    Google Scholar 

  7. Philips, S. R., Durden, D. A., andBoulton, A. A. 1974. Identification and distribution of tryptamine in the rat. Can. J. Biochem. 52:447–451.

    Google Scholar 

  8. Warsh, J. J., Godse, D. D., Stancer, H. C., Chan, P. W., andCoscina, D. V. 1977. Brain tryptamine in rats by a new gas chromatography-mass fragmentographic method. Biochem. Med. 18:10–20.

    Google Scholar 

  9. Sloan, J. W., Martin, W. R., Clements, T. H., Buchwald, W. F., andBridges, S. R. 1975. Factors influencing brain and tissue levels of tryptamine: species, drugs and lesions. J. Neurochem. 24:523–532.

    Google Scholar 

  10. Neff, N. H., andYang, H.-Y.T. 1974. Another look at the monoamine oxidases and the monoamine oxidase inhibitor drugs. Life Sci. 14:2061–2074.

    Google Scholar 

  11. Meek, J. L., Krall, A. R., andLipton, M. A. 1970. Psychotropic drugs and the metabolism of intracerebrally injected tryptamine, 5-hydroxytryptamine and norepinephrine. J. Neurochem. 17:1627–1635.

    Google Scholar 

  12. Wu, P. H., andBoulton, A. A. 1973. Distribution and metabolism of tryptamine in rat brain. Can. J. Biochem. 51:1104–1112.

    Google Scholar 

  13. Durden, D. A., andPhilips, S. R. 1980. Kinetic measurement of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem. 34:1725–1732.

    Google Scholar 

  14. Juorio, A. V., andKazakoff, C. W. 1984. The presence of β-phenylethylamine,p-tyramine,m-tyramine and tryptamine in ganglia and foot muscle of the garden snail (Helix aspersa). Experientia 40:549–551.

    Google Scholar 

  15. Bogdanski, D. E., Pletscher, A. Brodie, B. B., andUdenfriend, S. 1956. Identification and assay of serotonin in brain. J. Pharmacol. Exp. Ther. 117:82–88.

    Google Scholar 

  16. Giacalone, E., andValzelli, L. 1966. A method for the determination of 5-hydroxyindolyl-3-acetic acid in brain. J. Neurochem. 13:1265–1266.

    Google Scholar 

  17. Warsh, J. J., Coscina, D. V., Godse, D. D., andChan, P. W. 1979. Dependence of brain tryptamine formation on tryptophan availability. J. Neurochem. 32:1191–1196.

    Google Scholar 

  18. Juorio, A. V. 1982. The effects of some antipsychotic drugs, D-amphetamine, and reserpine on the concentration and rate of accumulation of tryptamine and 5-hydroxytryptamine in the mouse striatum. Can. J. Physiol. Pharmacol. 60:376–380.

    Google Scholar 

  19. Jones, R. S. G., andBoulton, A. A. 1980. Tryptamine and 5-hydroxytryptamine actions and interactions on cortical neurones in the rat. Life Sci. 27:1849–1856.

    Google Scholar 

  20. Saavedra, J. M., andAxelrod, J. 1973. Effect of drugs on the tryptamine content of rat tissues. J. Pharmacol. Exp. Ther. 185:523–529.

    Google Scholar 

  21. Koe, B. K., andWeissman, A. 1966.p-Chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmac. Exp. Ther. 154:499–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juorio, A.V., Durden, D.A. The distribution and turnover of tryptamine in the brain and spinal cord. Neurochem Res 9, 1283–1293 (1984). https://doi.org/10.1007/BF00973040

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973040

Keywords

Navigation