Skip to main content
Log in

Acyl-CoA cholesterol acyltransferase in cultured glioblastoma cells

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We investigated the incorporation of radioactive precursors into cholesteryl ester in cultured glioblastoma cells. It was found that polar cholesterol derivatives and exogenous cholesterol contained in lipoprotein complexes greatly enhanced intracellular cholesteryl ester formation. The direct transfer of the acyl moiety from acyl-CoA to free cholesterol was demonstrated in broken cell preparations. Further evidence of the existence of the acyl-CoA:cholesterol acyltransferase (ACAT) in glioblastoma cells came from the conversion of radioactive cholesterol to cholesteryl ester by glial cell homogenates. The characteristics of the enzymic assay were studied in detail. This enzymic activity was greatly enhanced in homogenates prepared from 7-ketocholesterol-treated cells. Thus, cells more active in cholesterol esterification possessed a higher ACAT activity. Progesterone inhibited cholesterol esterification in cell-free preparations. The marked inhibition of intracellular cholesteryl ester formation in intact cells by progesterone is a strong argument for the exclusive role of ACAT in glioblastoma cells. Similar properties of cholesteryl ester biosynthesis have been observed in neuroblastoma cells and primary brain cell cultures. In conclusion, the same enzyme is involved in cholesteryl ester biosynthesis in all neural cells. Neural and nonneural cells share many fundamental characteristics of cholesteryl ester formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suzuki, K. 1981. Chemistry and metabolism of brain lipids, Pages 355–370, Basic Neurochemistry, 3rd Edition (in Siegel, G. J., Albers, R. W., Agranoff, B. W. andKatzman, R. (eds.) Little, Brown and Company, Boston.

    Google Scholar 

  2. Yusuf, H. K. M., Dickerson, J. W. T., Hey, E. N., andWaterlow, J. C. 1981. Effect of malnutrition and subsequent rehabilitation on the development of mouse brain myelin. J. Neurochem. 36:707–714.

    Google Scholar 

  3. Davison, A. N. 1965. Advances in Lipid Research Pages 171–196,in Paoletti, R. andKraitchevsky, D., (eds.) Academic Press, NY.

    Google Scholar 

  4. Belin, J., andSmith, A. D. 1976. Wallerain degeneration of rat sciatic nerve. Changes in cholesteryl ester content and fatty acid composition. J. Neurochem. 27:969–970.

    Google Scholar 

  5. Norton, W. T., Poduslo, S. E., andSuzuki, K. 1966. Subacute sclerosing leukoencephalitis. II. Chemical studies including abnormal myelin and an abnormal ganglioside pattern. J. Neuropathol. Exp. Neurol. 25:582–597.

    Google Scholar 

  6. Kishimoto, Y., Moser, H. W., Kawamura, N., Platt, M., Pallante, S. L., andFenselau, C. 1980. Adrenoleukodystrophy: Evidence that abnormal very long chain fatty acids of brain cholesterol esters are of exogenous origin. Biochem. Biophys. Res. Commun. 96:69–76.

    Google Scholar 

  7. Mezei, C. 1970. Cholesterol esters and hydrolytic cholesterol esterase during wallerian degeneration. J. Neurochem. 17:1163–1170.

    Google Scholar 

  8. Eto, Y., andSuzuki, K. 1972. Cholesterol esters in developing rat brain: Enzymes of cholesterol ester metabolism. J. Neurochem. 19:117–121.

    Google Scholar 

  9. Choi, M. U., andSuzuki, K. 1979. Microsomal cholesterol ester hydrolase of rat brain: Lipids as effector of enzymatic activity.Arch. Biochem. Biophys. 197:570–579.

    Google Scholar 

  10. Choi, M. U., andSuzuki, K. 1978. A cholesterol-esterifying enzyme in rat central nervous system myelin. J. Neurochem. 31:879–885.

    Google Scholar 

  11. Jagannatha, H. M., andSastry, P. S. 1981. Cholesterol-esterfying enzymes in developing rat brain. J. Neurochem. 36:1352–1360.

    Google Scholar 

  12. Volpe, J. J., andHennessy, S. W. 1977. Cholesterol biosynthesis and 3-hydroxy-3-methyl-glutaryl coenzyme A reductase in cultured glial and neuronal cells. Biochim. Biophys. Acta 486:408–420.

    Google Scholar 

  13. Basu, S. K., Anderson, R. G. W., Goldstein, J. L., andBrown, M. S. 1977. Metabolism of cationized lipoproteins by human fibroblasts. J. Cell Biol. 74:119–135.

    Google Scholar 

  14. Asou, H., Brunngraber, E. G., andJeng, I. M. 1983. Cellular localization of GMI-ganglioside with biotinylated choleragen and avidin peroxidase in primary cultured cells from rat brain. J. Histochem. Cytochem. 31:1375–1379.

    Google Scholar 

  15. Brown, M. S., Dana, S., andGoldstein, J. L. 1975. Cholesterol ester formation in cultured human fibroblasts. J. Biol. Chem. 250:4025–4027.

    Google Scholar 

  16. Goldstein, J. L., Dana, S. E., andBrown, M. S. 1974. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia. Proc. Natl. Acad. Sci. USA 71:4288–4292.

    Google Scholar 

  17. Brown, M. S., Ho, Y. K., andGoldstein, J. L. 1980. The cholesterol ester cycle in macrophage foam cells. J. Biol. Chem. 255:9344–9352.

    Google Scholar 

  18. Goldstein, J. L., Faust, J. R., Dygos, J. H., Chorvat, R. J., andBrown, M. S. 1978. Inhibition of cholesteryl ester formation in human fibroblasts by an analogue of 7-ketocholesterol and by progesterone. Proc. Natl. Acad. Sci. USA 75:1877–1881.

    Google Scholar 

  19. Van Harken, D. R., Dixon, C. W., andHeimberg, M. 1969. Hepatic lipid metabolism in experimental diabetes. J. Biol. Chem. 244:2278–2285.

    Google Scholar 

  20. Volpe, J. J., Hennessy, S. W., andWong, T. 1978. Regulation of cholesterol ester synthesis in cultured glial and neuronal cells. Biochim. Biophys. Acta 528:424–435.

    Google Scholar 

  21. Kandutsch, A. A., Chen, H. W., andHeiniger, H. J. 1978. Biological activity of some oxygenated sterols. Science 201:498–501.

    Google Scholar 

  22. Brown, M. S., andGoldstein, J. L. 1974. Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblast by 7-ketocholesterol. J. Biol. Chem. 249:7306–7314.

    Google Scholar 

  23. Barden, R. E., andCleland, W. W. 1969. 1-Acylglycerol 3-phosphate acyltransferase from rat liver. J. Biol. Chem. 244:3677–3684.

    Google Scholar 

  24. Billheimer, J. T., Tavani, D., andNes, W. R. 1981. Effect of a dispersion of cholesterol in Triton WR-1339 on acyl CoA:cholesterol acyltransferase in rat liver microsomes. Anal. Biochem. 111:331–335.

    Google Scholar 

  25. Tavani, D. M., Nes, W. R., andBillheimer, J. T. 1982. The sterol substrate specificity of acyl CoA:cholesterol acyltransferase from rat liver. J. Lipid Res. 23:774–781.

    Google Scholar 

  26. Stokke, K. T., andNorum, K. R. 1971. Determination of lecithin-cholesterol acyltransferase in human blood plasma. Scand. J. Clin. Invest. 27:21–27.

    Google Scholar 

  27. Erickson, S. K., andCooper, A. D. 1980. Acyl-coenzyme A:cholesterol acyltransferase in human liver. In vitro detection and some characteristics of the enzymes. Metabolism 29:991–996.

    Google Scholar 

  28. Lands, W. E. M., andCrawford, C. G. 1976. Enzymes of membrane phospholipid metabolism in animals, Pages 3–85,in Martonosi, A. (ed.) The enzymes of biological membranes, Vol. 2. Plenum Press, NY.

    Google Scholar 

  29. Klopfenstein, W. E., de Kruyff, B., Verkleij, A. J., Demel, R. A., andVan Deenen, L. L. M. 1974. Differential scanning calorimetry on mixtures of lecithin, lysolecithin and cholesterol. Chem. Phys. Lipid 13:215–222.

    Google Scholar 

  30. Eto, Y., andSuzuki, K. 1971. Cholesterol ester metabolism in the brain: Properties and subcellular distribution of cholesterol-esterifying enzymes and cholesterol ester hydrolases in adult rat brain. Biochim. Biophys. Acta 239:293–311.

    Google Scholar 

  31. Johnson, R. C., andShah, S. N. 1978. Fatty acid and sterol specificity of cholesterol esterifying enzyme in developing rat brain. Lipids 13:777–782.

    Google Scholar 

  32. Johnson, R. C., andShah, S. N. 1978. Cholesterol ester, metabolizing enzymes in human brain: Properties subcellular distribution and relative levels in various diseased conditions. J. Neurochem. 31:895–962.

    Google Scholar 

  33. Eto, Y., andSuzuki, K. 1973. Cholesterol ester metabolism in rat brain. J. Biol. Chem. 248:1986–1991.

    Google Scholar 

  34. Yao, J. K., andDyck, P. J. 1981. Cholesterol esterifying enzymes in normal and degerating peripheral nerve. J. Neurochem. 37:156–163.

    Google Scholar 

  35. Johnson, R. C., andShah, S. N. 1979. Presence in human cerebrospinal fluid of cholesterol esterifying enzyme utilizing free fatty acids. Brain Res. 162:353–357.

    Google Scholar 

  36. Jeng, I., Kueser, J., andKlemm, N. 1983. Regulation of cholesteryl ester formation in cells of neural origin. Fed. Proc. 42:1463.

    Google Scholar 

  37. Gavey, K. L., Trujillo, D. L., andScallen, T. J. 1983. Evidence for phosphorylation/dephosphorylation of rat liver acyl-CoA:cholesterol acyltransferase. Proc. Natl. Acad. Sci. USA 80:2171–2174.

    Google Scholar 

  38. Basheeruddin, K., Rawstorne, S., andHiggins, M. J. P. 1982. Reversible activation of rat liver acyl-CoA:cholesterol acyltransferase in vitro. Biochem. Soc. Trans. 10:390–391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeng, I., Klemm, N. Acyl-CoA cholesterol acyltransferase in cultured glioblastoma cells. Neurochem Res 9, 1193–1210 (1984). https://doi.org/10.1007/BF00973034

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973034

Keywords

Navigation