Skip to main content
Log in

Gold as a hydrogen sensing electrode forin situ measurement of dissolved H2 in supercritical aqueous fluid

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Potentiometric studies of the Au-YSZ(Hg/HgO) (YSZ=yttrium stabilized zirconia) cell were conducted to investigate the suitability of gold as a sensing element forin situ determination of dissolved H2 in aqueous fluids at 375–400°C and 400 bars. Experimental results indicate that the gold electrode responds rapidly and reversibly to variations in dissolved H2, even at H2<0.1 mmol-kg−1. Nernstian response of the cell to dissolved H2 was demonstrated at 400°C and 400 bars

$$\Delta E = 0.9815 + 0.0668 \log m_{H_2 } $$

In fact, the performance of the gold electrode compares well to that of platinum. Considering the well known difficulties of using platinoid metals in H2S-bearing fluids, however, the gold electrode holds great promise forin situ measurement of dissolved H2 in chemically complex natural hydrothermal fluids. The results also suggest that the Au-YSZ(Hg/HgO) cell can be used to determine the solubility behavior of H2 in aqueous fluid at temperatures and pressures in the vicinity of the critical point of water. At present, such data are lacking, which severely constrains knowledge of the effect of temperature and pressure on the Henry's law constant of H2 in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mandelis and C. Christofides,Chem. Analysis 125, 5 (1993).

    Google Scholar 

  2. M. J. Madou and S. Roy Morrison,Chemical Sensing with Solid State Devices, (Academic Press, New York 1989), p. 1.

    Google Scholar 

  3. D. D. Macdonald, M. C. H. Mckubre, A. C. Scott, and P. R. Wentrcek,Ind. Eng. Chem. Fundam.20, 290 (1980).

    Google Scholar 

  4. O. Jonas, R. W. Bradshaw, and J. P. Gibeault,46th Ann. Water Conf. (Pittsburgh, PA, 1985).

  5. F. J. Sansone,Mar. Chem. 37, 3 (1992).

    Google Scholar 

  6. R. W. Shaw, T. B. Brill, A. A. Clifford, C. A. Eckert, and E. U. Franck,Chem. & Engineer News 12, 26 (1991).

    Google Scholar 

  7. S. J. Buelow, B. R. Foy, P. C. Dell'Orco, and J. M. Robinson, inBook of Abstracts (II), 210th ACS National Meeting, (American Chemical Society, 1995), p. PHYS 091.

  8. I-M. Chou and H. P. Eugster,Eos. Trans. Amer. Geophys. Union 57, 340 (1976).

    Google Scholar 

  9. W. D. Gunter, J. Myers, and J. R. Wood,Contrib. Mineral. Petrol. 70, 23 (1979).

    Google Scholar 

  10. K. Ding and W. E. Seyfried Jr.,Geochimica at Cosmochimica Acta 59, 4769 (1995).

    Google Scholar 

  11. S. Hettiarachchi, P. Kedzierzawski, and D. D. Macdonald,J. Electrochem. Soc. 132, 1866 (1985).

    Google Scholar 

  12. S. Hettiarachchi, K. Makela, H. Song, and D. D. Macdonald,J. Electrochem. Soc. 139, L3 (1992).

    Google Scholar 

  13. J. D. Clemens and M. A. McKibben, inHydrothermal Experimental Techniques, eds., G. C. Ulmer and H. L. Barnes, (Wiley-Interscience, New York 1987), p. 138.

    Google Scholar 

  14. J. Oudar,Catal. Rev. Sci. Eng. 22, 171 (1980).

    Google Scholar 

  15. L. Hegedus and R. W. McCabe,Catal. Rev. Sci. Eng. 23, 377 (1981).

    Google Scholar 

  16. I-M. Chou,Am. J. Sci. 286, 638 (1986).

    Google Scholar 

  17. W. D. Gunter, J. Myers, and S. Girsperger, inHydrothermal Experimental Techniques, eds., G. C. Ulmer and H. L. Barnes, (Wiley-Interscience, New York 1987), p. 100.

    Google Scholar 

  18. G. J. Hills and D. J. G. Ives, inReference Electrodes: Theory and Practice, ed. D. J. G. Ives and G. J. Janz, (Academic Press, New York 1961), p.73.

    Google Scholar 

  19. W. E. Seyfried D. R. Janecky, and M. E. Berndt inHydrothermal Experimental Techniques, eds. G. C. Ulmer and H. L. Barnes, (Wiley-Interscience, New York 1987) p. 216.

    Google Scholar 

  20. B. Hammer and J. K. Norskov,Nature 376, 238 (1995).

    Google Scholar 

  21. R. Weewer, K. Hemmes, and J. H. W. de Wit,J. Electrochem. Soc. 142, 389 (1995).

    Google Scholar 

  22. D. D. Macdonald, S. Hettiarachchi, H. Song, K. Makela, R. Emerson, and M. Ben-Haim,J. Solution Chem. 21, 849 (1992).

    Google Scholar 

  23. H. Craig, J. A. Welhan, K. R. Kim, R. Poreda, and J. E. Lupton,Eos; Trans. Amer. Geophys. Union 61, 992 (1980).

    Google Scholar 

  24. K. R. Kim, J. A. Welhan, and H. Craig,Eos; Trans. Amer. Geophys. Union 65, 973 (1984).

    Google Scholar 

  25. K. L. Von Damm, J. M. Edmond, B. Grant, C. I. Measures, B. Walden, and R. F. Weiss,Geochim. Cosmochim. Acta 49, 2197 (1985).

    Google Scholar 

  26. T. S. Bowers, A. C. Campbell, C. I. Measures, A. J. Spivack, and J. M. Edmond,J. Geophys. Res. 93, 4522 (1988).

    Google Scholar 

  27. A. C. Campbell, M. R. Palmer, G. P. Klinkhammer, T. S. Bowers, J. M. Edmond, J. R. Lawrence, J. F. Casey, G. Thompson, S. E. Humphris, P. Rona, and J. A. Karson,Nature 335, 514 (1988).

    Google Scholar 

  28. W. C. Evans, L. D. White, and J. B. Rapp,J. Geophys. Res 93, 15305 (1988).

    Google Scholar 

  29. M. D. Lilley, D. A. Butterfield, E. J. Olson, J. E. Luoton, S. A. Macko, and R. E. McDuff,Nature 364, 45 (1993).

    Google Scholar 

  30. D. D. Macdonald, S. Hettiarachchi, and S. J. Lenhart,J. Solution Chem. 17, 719 (1988).

    Google Scholar 

  31. G. B. Naumov, B. N. Ryzhenko, and I. L. Khodakovsky,Handbook of Thermodynamic Data, USGS-WRD-74-001 (1974).

  32. L. Haar, J. Gallagher, and G. Kell,NBS/NRC Steam Tables, (Hemisphere, 1984).

  33. J. W. Johnson, E. H. Oelkers, and H. C. Helgeson,Computers Geosci. 18, 899 (1992).

    Google Scholar 

  34. R. A. Robie, B. S. Hemingway, and J. R. Fisher,U. S. Geol. Survey Bull. 1452 (1978).

  35. N. Kishima and H. Sakai,Geochem. J. 18, 19 (1984).

    Google Scholar 

  36. K. Ding and W. E. Seyfried Jr.,Eos; Trans. Amer. Geophys Union 71, 1680 (1990).

    Google Scholar 

  37. E. L. Shock, H. C. Helgeson, and D. A. Sverjensky,Geochimica at Cosmochimica Acta 53, 2157 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, K., Seyfried, W.E. Gold as a hydrogen sensing electrode forin situ measurement of dissolved H2 in supercritical aqueous fluid. J Solution Chem 25, 421–433 (1996). https://doi.org/10.1007/BF00972990

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972990

Key Words

Navigation