Skip to main content
Log in

Activity coefficient calculations applied to ZnCl2 in LiCl media. Distinction between the real activity coefficient and the effect of complexation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The values of the formation constants of the zinc-chlorocomplexes in LiCl media at different ionic strengths have been evaluated from literature data on perchlorate media by using the specific interaction theory, SIT. The distinction between the real or stoichiometric activity coefficient of the electrolyte ZnCl2 and the contribution from the formation of complexes in the experimentally measured mean activity coefficient, resulting from varying the ionic strength, has been made on the basis of the SIT theory. Values of the formation constant for the complexes at infinite dilution, as well as interaction and salting coefficients, are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Grossmann,Z. Anorg. Chem. 43, 356 (1905).

    Google Scholar 

  2. J. Bjerrum,Kgl. Danske Vidensk. Selsk. 11(5) (1941).

  3. M. Whitfield,Activity Coefficients in Electrolyte Solutions, R. M. Pytkowicz ed., Vol. 2, (CRC Press, Boca Raton, Florida, 1979), Chap. 3.

    Google Scholar 

  4. L. G. Sillén and B. Liljeqvist,Svensk Kemist Tidskr. 56, 85 (1944).

    Google Scholar 

  5. S. A. Schukarev, L. S. Lilich, and V. A. Latysheva,Zh. Neorg. Khim. 1, 225 (1956).

    Google Scholar 

  6. P. Kivalo and R. Luoto,Suomen Kem. 30B, 163 (1957).

    Google Scholar 

  7. S. Tribalat and C. Dutheil,Bull. Soc. Chim. France 160 (1960).

  8. E. L. Short and D. F. C. Morris,J. Inorg. Nucl. Chem. 18, 192 (1961).

    Google Scholar 

  9. Y. Marcus and D. Maydan,J. Phys. Chem. 67, 979 (1963).

    Google Scholar 

  10. V. E. Mironov, F. Ya. Kul'ba, and E. Yu. Ivanov, Russ.J. Inorg. Chem. 9, 884 (1964).

    Google Scholar 

  11. E. Ya. Ben'yash and T. G. Maslakova,Russ. J. Inorg. Chem. 9, 1472 (1964).

    Google Scholar 

  12. G. Scibona, F. Orlandini, and P. R. Danesi,J. Inorg. Nucl. Chem. 28, 1313 (1966).

    Google Scholar 

  13. P. J. D. Lloyd,Solvent Extraction Chemistry, D. Dyrssen, J. O. Liljenzin and J. Rydberg eds., (North-Holland, Amsterdam, 1967), p. 456.

    Google Scholar 

  14. D. Dyrssen and M. J. Tavares,Solvent Extraction Chemistry, D. Dyrssen, J. O. Liljenzin and J. Rydberg eds., (North-Holland, Amsterdam, 1967), p. 465.

    Google Scholar 

  15. D. F. C. Morris, D. T. Anderson, S. L. Waters, and G. L. Reed,Electrochim. Acta,14, 643 (1969).

    Google Scholar 

  16. T. Lengyel,Acta Chim. Acad. Sci. Hung,64, 331 (1970).

    Google Scholar 

  17. V. A. Fedorov, G. E. Chernikova, and V. E. Mironov,Russ. J. Inorg. Chem. 15, 1082 (1970).

    Google Scholar 

  18. V. A. Fedorov, G. E. Chernikova, T. N. Kalosh, and V. E. Mironov,Russ. J. Inorg. Chem. 16, 170 (1971).

    Google Scholar 

  19. R. Grauer and P. Schindler,Corrosion Sci. 12, 405 (1972).

    Google Scholar 

  20. M. Moriya and T. Sekine,Bull. Chem. Soc. Japan 45, 1626 (1972).

    Google Scholar 

  21. M. H. Hutchinson and C. E. Higginson,J. C. S. Dalton 1247 (1973).

  22. J. W. Bixler and T. M. Larson,J. Inorg. Nucl. Chem. 36, 224 (1974).

    Google Scholar 

  23. M. H. Mihailov,J. Inorg. Nucl. Chem. 36, 107 (1974).

    Google Scholar 

  24. K. G. Ashurst, Report No. 1626, (National Institute of Metallurgy, Johannesburg, S. Africa, 1974).

    Google Scholar 

  25. T. Sato and S. Murakami,Anal. Chim. Acta 82, 217 (1976).

    Google Scholar 

  26. T. Sato and T. Kato,J. Inorg. Nucl. Chem. 39, 1205 (1977).

    Google Scholar 

  27. E. Skou, T. Jacobsen, W. van der Hoeven, and S. Allung,Electrochimica Acta 22, 169 (1977).

    Google Scholar 

  28. K. Inoue, T. Tsuji, and I. Nakamori,J. Chem. Eng. Japan 12, 353 (1979).

    Google Scholar 

  29. T. Sato, T. Shimomura, S. Murakami, T. Maeda, and T. Nakamura,Hydrometallurgy,12, 245 (1984).

    Google Scholar 

  30. J. N. Brönsted,J. Am. Chem. Soc. 44, 877 and 938 (1922).

    Google Scholar 

  31. G. Scatchard,Chem. Rev. 19, 309 (1936).

    Google Scholar 

  32. F. A. Guggenheim,Applications of Statistical Mechanics, (Clarence Press, Oxford, 1966).

    Google Scholar 

  33. F. A. Long and W. F. McDevit,Chem. Rev. 51, 119 (1952).

    Google Scholar 

  34. L. Ciavatta,Annali di Chimica Italiana, 551 (1980).

  35. H. E. Wirth and F. N. Collier,J. Am. Chem. Soc. 72, 5292 (1950).

    Google Scholar 

  36. M. Maeda, G. Nakagawa, and G. Biedermann,J. Phys. Chem. 87, 121 (1983).

    Google Scholar 

  37. F. Vaslow,J. Phys. Chem. 70, 2286 (1966).

    Google Scholar 

  38. S. Sundstrand,Int. Rept. Inorganic Chemistry Dept., (The Royal Institute of Technology, Stockholm, 1975).

    Google Scholar 

  39. J. M. Madariaga, personal communication.

  40. R. H. Stokes and R. A. Robinson,J. Am. Chem. Soc. 70, 1870 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, J.L., Elizalde, M.P. Activity coefficient calculations applied to ZnCl2 in LiCl media. Distinction between the real activity coefficient and the effect of complexation. J Solution Chem 25, 1055–1069 (1996). https://doi.org/10.1007/BF00972921

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972921

Key Words

Navigation