Journal of Solution Chemistry

, Volume 25, Issue 4, pp 411–420 | Cite as

Host-guest interactions. I. Volumes of the sucrose +β-cyclodextrin+water ternary systems at 25°C

  • Mandeep Singh Bakshi


Densities of sucrose+β-cyclodextrin+water (SUC+CYC+W) ternary systems were measured at 25°C and mean apparent molar volumes of SUC+CYC (Vϕ,m) in water in each composite mixture have been evaluated. Apparent molar volumes of SUC (Vϕ,suc) have also been computed from the volume data of each ternary composite mixture. Variation of Vϕ,m and Vϕ,suc with respect to the total molality mt of SUC+CYC and to that of SUC msuc show the formation of inclusion complexes between SUC and CYC molecules with 1∶2 and 1∶1 stochiometries in composite mixtures of mole ratios 0.588 and 1.12 respectively.


Physical Chemistry Sucrose Inorganic Chemistry Molar Volume Ternary System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Li and W. C. Purdy,Chem. Rev. 92, 1457 (1992).Google Scholar
  2. 2.
    M. L. Bender and M. Komiyama,Cyclodextrin Chemistry, (Springer-Verlag, New York, 1978).Google Scholar
  3. 3.
    J. Szejtli,Cyclodextrin and Their Inclusion Complexes, (Akademiai Kiado, Budapest, 1982).Google Scholar
  4. 4.
    F. Cramer and H. Hettler,Naturwissenschaften 54, 625 (1967).PubMedGoogle Scholar
  5. 5.
    E. Junquera, G. Taradajos, and E. Aicart,Langmuir 9, 1213 (1993).Google Scholar
  6. 6.
    H. Hoiland, J. A. Ringseth, and T. S. Brun,J. Solution Chem. 8, 779 (1979).Google Scholar
  7. 7.
    A. F. Danil de Namor, M. T. Garrido Pardo, L. Munoz, D. A. Pacheco Tanaka, F. J. Sueros Velarde, and M. C. Cabaleiro,J. Chem. Soc. Chem. Commun., 855 (1992).Google Scholar
  8. 8.
    W. M. Z. Wan Tunus, J. Taylor, D. M. Bloor, D. G. Hall, and E. WynJones,J. Phys. Chem. 96, 8979 (1992).Google Scholar
  9. 9.
    D. A. Rees,Int. Rev. of Science, Biochemistry Series 5, 1 (1975).Google Scholar
  10. 10.
    M. S. Bakshi, R. Crisantino, R. De Lisi, and S. Milioto, (submitted).Google Scholar
  11. 11.
    G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).Google Scholar
  12. 12.
    G. Roux-Desgranges, S. Bordere, and A. H. Roux,J. Colloid and Interface Science 162, 284 (1994).Google Scholar
  13. 13.
    R. De Lisi V. Turco Liveri, M. Castagnolo and A. Inglese,J. Solution Chem. 15 23 (1986).Google Scholar
  14. 14.
    G. Shahidi, F. G. Farrell, and J. T. Edward,J. Solution Chem. 5, 807 (1976).Google Scholar
  15. 15.
    J. Sangster, T. Teng, and F. Lenzi,J. Solution Chem. 5, 575 (1976).Google Scholar
  16. 16.
    J. E. Garrod and T. H. Herrington,J. Phys. Chem. 74, 363 (1970).Google Scholar
  17. 17.
    M. S. Bakshi R. Crisantino, R. De Lisi, and S. Milioto,Langmuir 10, 423 (1994).Google Scholar
  18. 18.
    J. E. Desnoyers, D. Hètu, and Gèrald Perron,J. Solution Chem. 12 427 (1983).Google Scholar
  19. 19.
    M. Yamanaka and S. Kaneshina,J. Solution Chem. 19, 729 (1990).Google Scholar
  20. 20.
    I. Sanemasa, T. Osajima, and T. DeguchiBull. Chem. Soc. Jpn. 63, 2814 (1990).Google Scholar
  21. 21.
    A. Wishnia and S. Jo Lappi,J. Mol. Biol. 82, 77 (1974).PubMedGoogle Scholar
  22. 22.
    I. Sanemasa, T. Osajima, and T. Deguchi,Bull. Chem. Soc. Jpn. 63, 2814 (1990).Google Scholar
  23. 23.
    G. Barone, G. Castronuovo, P. D. Vecchio, V. Elia, and M. MuscettaJ. Chem. Soc. Faraday Trans. 1,82, 2089 (1986).Google Scholar
  24. 24.
    U. R. Dharmawardana, S. D. Christian, E. E. Tucker, R. W. Taylor, and J. F. Scamehorn,Langmuir 9, 2258 (1993).Google Scholar
  25. 25.
    Z. J. Tan, X. X. Zhu, and G. R. Brown,Langmuir 10, 1034 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Mandeep Singh Bakshi
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyHauz KhasIndia

Personalised recommendations