Journal of Solution Chemistry

, Volume 24, Issue 2, pp 153–170 | Cite as

Excess volumes of binary mixtures of ethylbenzene with octanol, nonanol and dodecanol from 50 to 100°C and 0.1 to 7.5 MPa

  • S. K. Garg
  • J. C. Ahluwalia
Article

Abstract

The excess volume V E of binary mixtures of octanol, nonanol and dodecanol in ethylbenzene have been calculated from the densities measured with a vibrating tube densimeter at temperatures from 50 to 100 °C and at pressures from 0.1 to 7.5 MPa. The values of V E are positive for all the three mixtures in the complete temperature, pressure and mole fraction ranges studied. The maxima in V E is observed at 0.4 mole fraction of alkanol. The results are discussed in terms of specific interactions present in the binary mixtures. The second order thermodynamic quantities (∂V E /∂T)p,(∂V E /∂P)T and (∂V E /∂P)T which have been derived from the effect of temperature and pressure on V E , indicate an overall net creation of order in the binary mixtures of ethylbenzene with higher homologues of alkanols.

Key Words

Densities excess volume pressure temperature ethylbenzene octanol nonanol dodecanol order creation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ekwall,Advances in Liquid Crystals, Vol. 1, G. H. Brown, ed., (Academic Press, New York, 1975) p. 1.Google Scholar
  2. 2.
    W. E. Acree,Thermodynamic Properties of Nonelectrolyte Solutions, (Academic Press, Florida, 1984) p. 150.Google Scholar
  3. 3.
    A. D. Aprano, D. I. Donato, and E. Caponetti,J. Solution Chem. 8, 135, (1979).Google Scholar
  4. 4.
    R. Mecke,Discuss. Faraday Soc. 9, 161, (1950).Google Scholar
  5. 5.
    E. M. Wolley and L. G. Hepler,J. Phys. Chem. 76, 3058 (1972).Google Scholar
  6. 6.
    B. L. Brown and P. Jones,J. Chem. Soc. Faraday Trans. 71, 1657 (1975).Google Scholar
  7. 7.
    E. Sjoblom, U. Henriksson, and P. Stenius,Finnish Chem. Lett. 6–8, 114, (1982).Google Scholar
  8. 8.
    E. Sjoblom and U. Henriksson,Surfactant in Solution, Vol. 3, K. L. Mittal and B. Lindman, eds., (Plenum Press, New York, 1984) p. 1867.Google Scholar
  9. 9.
    E. F. Tucker, S. B. Farnham, and S. D. Christian,J. Phys. Chem. 73, 3820 (1969).Google Scholar
  10. 10.
    E. F. Tucker and E. D. Becker,J. Phys. Chem. 77, 1783, (1973).PubMedGoogle Scholar
  11. 11.
    R. H. Stokes,J. Chem. Soc. Faraday Trans. 1 73, 1140 (1977).Google Scholar
  12. 12.
    H. T. French, A. Richards, and R. H. Stokes,J. Chem. Thermodyn. 11, 671, (1979).Google Scholar
  13. 13.
    H. T. French and R. H. Stokes,J. Phys. Chem. 85, 3347, (1981).Google Scholar
  14. 14.
    E. Aicart, G. Tardajos, and M. Costas,J. Solution Chem. 18, 369, (1989).Google Scholar
  15. 15.
    M. Costas and D. Patterson,Thermochimica Acta 120, 161, (1987).Google Scholar
  16. 16.
    S. N. Bhattacharyya, M. Costas, D. Patterson, and V. H. Tra,Fluid Phase Equilibria20, 27, (1987).Google Scholar
  17. 17.
    H. Wagne and R. L. Lichtenthaler,Thermochimica Acta 94, 67, (1985).Google Scholar
  18. 18.
    E. Wilhelm,Thermochimica Acta 94, 47, (1985).Google Scholar
  19. 19.
    D. Patterson,J. Solution Chem. 23, 105, (1994).Google Scholar
  20. 20.
    I. Garciadela Fuente, J. F. Rodriguez, J. A. Gonzalez, J. C. Cobos, and C. Casanova,J. Solution Chem. 21, 425, (1992).Google Scholar
  21. 21.
    R. K. Dewan, S. K. Mehta, R. Parashar, and Kiran Bala,J. Chem. Soc. Faraday Trans. 87, 1561, (1991).Google Scholar
  22. 22.
    K. N. Marsh and C. Burfitt,J. Chem. Thermodyn. 7, 955, (1975).Google Scholar
  23. 23.
    J. D. B. Featherstone and N. A. Dickinson,J. Chem. Thermodyn. 9, 75, (1977).Google Scholar
  24. 24.
    P. Saris, J. B. Rosenholm, E. Sjoblom, and U. Henriksson,J. Phys. Chem. 90, 660, (1986).Google Scholar
  25. 25.
    A. Pettersson, P. Saris, and J. B. Rosenholm,J. Chem. Soc. Faraday Trans. I 82, 2435, (1986).Google Scholar
  26. 26.
    R. K. Dewan, S. Madan, and S. K. Mehta,J. Solution Chem. 20, 233, (1991).Google Scholar
  27. 27.
    H. Naorem and S. K. Suri,J. Solution Chem. 22, 183 (1993).Google Scholar
  28. 28.
    A. D. Aprano, I. D. Donato, and V. Turco Liveri,J. Solution Chem. 19, 711, (1990).Google Scholar
  29. 29.
    A. Amigo, R. Bravo, and M. I. PazAndrade,J. Chem. Thermodyn. 23, 679, (1991).Google Scholar
  30. 30.
    J. Pardo, V. Roriguez, M. C. Lopez, F. M. Royo, and J. S. Urieta,J. Chem, Thermodyn.24, 113, (1992).Google Scholar
  31. 31.
    M. Diaz Pena and G. Tardajos,J. Chem. Thermodyn. 11, 441, (1979).Google Scholar
  32. 32.
    F. D. Rossiniet al., Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Carbons (API Research Project 44, 1966).Google Scholar
  33. 33.
    T. S. Banipal, S. K. Garg, and J. C. Ahluwalia,J. Chem. Thermodynamics 23, 923 (1991)Google Scholar
  34. 34.
    S. K. Garg, T. S. Banipal, and J. C. Ahluwalia,J. Chem. Eng. Data 38, 227, (1993).Google Scholar
  35. 35.
    L. Harr, J. S. Gallagher, and G. S. Kell,NBS/NRC Steam Tables (Hemisphere: Washington, New York, 1984).Google Scholar
  36. 36.
    S. K. Garg, T. S. Banipal, and J. C. Ahluwalia,J. Chem. Thermodyn. 25, 57, (1993).Google Scholar
  37. 37.
    R. K. Dewan, and S. K. Mehta,J. Chem. Thermodyn. 19, 819, (1987).Google Scholar
  38. 38.
    A. J. Treszczanowicz and G. C. Benson,J. Chem. Thermodyn. 9, 1189, (1977).Google Scholar
  39. 39.
    A. J. Treszczanowicz and G. C. Benson,J. Chem. Thermodyn. 10, 967, (1978).Google Scholar
  40. 40.
    A. J. Treszczanowicz and G. C. Benson,J. Chem. Thermodyn. 12, 173, (1980).Google Scholar
  41. 41.
    A. J. Treszczanowicz, O. Kiyohara, and G. C. Benson,J. Chem. Thermodyn. 13, 253, (1981).Google Scholar
  42. 42.
    M. Iwahashi, Y. Hayashi, N. Hachiya, H. Matsuzawa, and H. Kobayashi,J. Chem. Soc. Faraday Trans. 89, 707, (1993).Google Scholar
  43. 43.
    O. Kiyohara, G. C. Benson, and A. J. Treszczanowicz,J. Chem. Eng. Data 26, 263, (1981).Google Scholar
  44. 44.
    A. D. Matilla, G. Tardajos, E. Junquera, and E. Aicart,J. Solution Chem. 20, 805, (1991).Google Scholar
  45. 45.
    I. Prigogine,The Molecular Theory of Solution (North Hooland, Amsterdam, 1957).Google Scholar
  46. 46.
    P. J. Flory,Discuss. Faraday Soc. 49, 7, (1970).Google Scholar
  47. 47.
    H. T. Van and D. Patterson,J. Solution Chem. 11, 793, (1982).Google Scholar
  48. 48.
    M. Costas and D. Patterson,J. Solution Chem. 11, 793, (1982).Google Scholar
  49. 49.
    P. J. Flory,J. Am. Chem. Soc. 87, 1833, (1965).Google Scholar
  50. 50.
    P. J. Flory and A. Abe,J. Am. Chem. Soc. 86, 3563, (1964).Google Scholar
  51. 51.
    A. Abe and P. J. Flory,J. Am. Chem. Soc. 87 1838, (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. K. Garg
    • 1
  • J. C. Ahluwalia
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations