Skip to main content
Log in

Direct hydrogen-1, carbon-13, and nitrogen-15 NMR study of magnesium(II)-isothiocyanate complexing

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A hydrogen-1, carbon-13, and nitrogen-15 NMR study of magnesium(II)-isothiocyanate complexation in aqueous mixtures has been completed. At temperatures low enough to slow proton and ligand exchange, separate1H,13C, and15N NMR signals are observed for coordinated and bulk water molecules and anions. The1H NMR spectra reveal signals for the hexahydrate and the mono-through triisothiocyanato complexes, as well as two small signals attributed to [Mg(H2O)5(OH)]1+ and [Mg(H2O)4(OH)(NCS)]. Accurate hydration numbers were obtained from signal area integrations at each NCS concentration. In the15N NMR spectra, signals also were observed for the mono-through triisothiocyanato complexes, and a small signal believed to be due to [Mg(H2O)4(OH)(NCS)]. Coordination number contributions for NCS were measured from these spectra and when combined with the hydration numbers they totalled essentially six at each anion concentration. Signals for [Mg(H2O)5(NCS)]1+ through [Mg(H2O)3(NCS)3]1− also were observed in the13C NMR spectra and the area evaluations were comparable to the15N NMR results. An analysis of the magnitude and sign of the coordinated NCS chemical shifts identified the nitrogen atom as the anion binding site. All spectra indicated [Mg(H2O)5(NCS)]1+ and [Mg(H2O)4(NCS)2] were the dominat isothiocyanato complexes over the entire range of anion concentrations. The inability to detect evidence for complexes higher than the triisothiocyanato reflects the competitive binding ability of water molecules and perhaps the decreased electrostatic interaction between NCS and negatively charged higher complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. B. Silber, R. Bakhshandehfar, L. A. Contreras, F. Gaizer, M. Gonsalves, and S. Ismail,Inorg. Chem. 29, 4473 (1990).

    Google Scholar 

  2. H. B. Silber and R. L. Campbell,J. Alloys Compd. 192, 262 (1993).

    Google Scholar 

  3. J.-C. G. Bünzli and V. Kasparek,Inorg. Chim. Acta 182, 101 (1991).

    Google Scholar 

  4. J.-C. G. Bünzli, A. Milicic-Tang, and C. Mabillard,Helv. Chim. Acta 76, 1292 (1993).

    Google Scholar 

  5. J.-C. G. Bünzli,J. Alloys Compd. 192, 266 (1993).

    Google Scholar 

  6. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, and R. Perrigan,J. Solution Chem. 18, 313 (1989).

    Google Scholar 

  7. A. Fratiello, V. Kubo-Anderson, S. Azimi, T. Flores, E. Marinez, D. Matejka R. Perrigan, and M. Vigil,J. Solution Chem. 19, 811 (1990).

    Google Scholar 

  8. A. Fratiello, V. Kubo-Anderson, S. Azimi, E. Marinez, D. Matejka, R. Perrigan, and B. Yao,J. Solution Chem. 20, 893 (1991).

    Google Scholar 

  9. A. Fratiello, V. Kubo-Anderson, S. Azimi, F. Laghaei, R. D. Perrigan, and F. Reyes,J. Solution Chem. 21, 1015 (1992).

    Google Scholar 

  10. A. Fratiello, V. Kubo-Anderson, S. Azimi, F. Marinez, D. Matejka, R. Perrigan, and B. Yao,J. Solution Chem. 21, 651 (1992).

    Google Scholar 

  11. A. Fratiello, V. Kubo-Anderson, S. Azimi, O. Chavez, F. Laghaei, and R. D. Perrigan,J. Solution Chem. 22, 519 (1993).

    Google Scholar 

  12. A. Fratiello, V. Kubo-Anderson, E. L. Bolanos, O. Chavez, F. Laghaei, J. V. Ortega, and R. D. Perrigan,J. Solution Chem. 23, 1019 (1994).

    Google Scholar 

  13. A. Fratiello, V. Kubo-Anderson, T. Bolinger, C. Cordero, B. DeMerit, T. Flores, D. Matejka, and R. Perrigan,J. Magn. Reson. 83, 358 (1989).

    Google Scholar 

  14. A. Fratiello, V. Kubo-Anderson, E. L. Bolanos, D. Haigh, F. Laghaei, and R. D. Perrigan,J. Magn. Reson. Series A107, 56 (1994).

    Google Scholar 

  15. A. Fratiello, V. Kubo-Anderson, S. Azimi, C. Fowler, E. Marinez, R. Perrigan, S. Shayegan, and B. Yao,Magn. Reson. Chem. 30, 280 (1992).

    Google Scholar 

  16. A. Fratiello, V. Kubo-Anderson, E. Bolanos, O. Chavez, J. V. Ortega, R. D. Perrigan, A. Reyes, and S. M. Stoll,Mag. Reson. Chem. 33, 431 (1995).

    Google Scholar 

  17. C. Menard, B. Wojtkowiak, and M. Chabanel,Bull. Soc. Chim. Belg. 81, 241 (1972).

    Google Scholar 

  18. D. D. K. Chingakule, P. Gans, J. B. Gill, and P. J. Longdon,Monatsch Chem. 123, 521 (1992).

    Google Scholar 

  19. W. R. Fawcett, and G. Liu,J. Phys. Chem. 96, 4231 (1992).

    Google Scholar 

  20. P. Gans, J. B. Gill, and P. J. Longdon,J. Chem. Soc., Faraday Trans. 90, 315 (1994).

    Google Scholar 

  21. G. Fleissner, A. Hallbruker, and E. Mayer,J. Phys. Chem. 97, 4806 (1993).

    Google Scholar 

  22. H. A. Berman, H. J. C. Yeh, and T. R. Stengle,J. Phys. Chem. 79, 2551 (1975).

    Google Scholar 

  23. J. H. Swinehart, and H. Taube,J. Chem. Phys. 37, 1579 (1962).

    Google Scholar 

  24. S. Nakamura, and S. Meiboom,J. Am. Chem. Soc.,89, 5546 (1967).

    Google Scholar 

  25. N. A. Matwiyoff and W. G. Movius,J. Am. Chem. Soc. 89, 6077 (1967).

    Google Scholar 

  26. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,Chem. Comm. 173 (1968).

  27. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,J. Chem. Phys. 48, 3705 (1968).

    Google Scholar 

  28. M. C. R. Symons, and V. K. Thompson,Rev. Chem. Miner. 15, 113 (1978).

    Google Scholar 

  29. A. Fratielloet al, unpublished results.

  30. P. S. Pregosin, H. Streit, and L. M. Venanzi,Inorg. Chim. Acta 38, 237 (1980).

    Google Scholar 

  31. A. Fratiello, R. E. Lee, V. M. Nishida, and R. E. Schuster,Inorg. Chem. 8, 69 (1969).

    Google Scholar 

  32. F. Tanaka, V. Kawasaki, and S. YamashitaJ. Chem. Soc., Faraday Trans.I 84, 1083 (1988).

    Google Scholar 

  33. H. A. Berman and T. R. Stengle,J. Phys. Chem. 79, 1001 (1975).

    Google Scholar 

  34. J. B. Lambert and W. Schilf,J. Am. Chem. Soc. 110, 6364 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratiello, A., Kubo-Anderson, V., Adanalyan, A. et al. Direct hydrogen-1, carbon-13, and nitrogen-15 NMR study of magnesium(II)-isothiocyanate complexing. J Solution Chem 24, 1249–1263 (1995). https://doi.org/10.1007/BF00972831

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972831

Key Words

Navigation