Siberian Mathematical Journal

, Volume 19, Issue 6, pp 890–901 | Cite as

Prevarieties of associative rings whose elementary theory is decidable

  • A. P. Zamyatin


Elementary Theory Associative Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. L. Ershov et al., “Elementary theories,” Usp. Mat. Nauk,20, No. 4, 37–108 (1965).Google Scholar
  2. 2.
    Yu. L. Ershov, “Elementary theories of groups,” Dokl. Akad. Nauk SSSR,203, No. 6, 1240–1243 (1973).Google Scholar
  3. 3.
    A. P. Zamyatin, “Prevarieties of semigroups whose elementary theory is decidable,” Algebra Logika,12, No. 4, 417–472 (1973).Google Scholar
  4. 4.
    A. I. Mal'sev, Algebraic Systems [in Russian], Nauka, Moscow (1970).Google Scholar
  5. 5.
    Lee Sin-Min, “Equational classes of rings generated by zero rings and Galois fields,” Acta Sci. Math.,37, Nos. 1–2, 83–86 (1975).Google Scholar
  6. 6.
    A. A. Vinogradov, “Quasivarieties of Abelian groups,” Algebra Logika,4, No. 6, 15–19 (1965).Google Scholar
  7. 7.
    L. Fuchs, “The existence of undecomposable Abelian groups of arbitrary power,” Acta Math. Hung.,10, Nos. 3–4, 453–457 (1959).Google Scholar
  8. 8.
    R. Raghavendran, “Finite associative rings,” Compositio Math.,21, No. 2, 195–229 (1969).Google Scholar
  9. 9.
    Yu. L. Ershov, “Undecidability of certain fields,” Dokl. Akad. Nauk SSSR,161, No. 1, 27–29 (1965).Google Scholar
  10. 10.
    N. Jacobson, Structure of Rings, Amer. Math. Soc. (1964).Google Scholar
  11. 11.
    I. N. Herstein, Noncommutative Rings, Math. Assn. (1968).Google Scholar
  12. 12.
    R. M. Robinson, “Undecidable rings,” Trans. Am. Math. Soc.,70, No. 1, 137–139 (1951).Google Scholar
  13. 13.
    A. A. Vinogradov, “Minimal quasivarieties of rings and relation algebras,” Algebra Logika,6, No. 4, 3–10 (1967).Google Scholar
  14. 14.
    I. V. L'vov, “Varieties of associative rings,” Algebra Logika,12, No. 3, 269–297 (1973).Google Scholar
  15. 15.
    B. L. van der Waerden, Algebra, Ungar.Google Scholar
  16. 16.
    M. O. Rabin, “Decidability of second-order theories and automata on infinite trees,” Trans. Am. Math. Soc.,141, No. 6, 1–35 (1969).Google Scholar
  17. 17.
    Yu. L. Ershov, “Decidability of the elementary theory of relatively complemented distributive lattices and the theory of filters,” Algebra Logika,3, No. 3, 17–38 (1964).Google Scholar
  18. 18.
    B. Corbas, “Finite rings in which the product of any two zero divisors is zero,“ Arch. Math.,21, No. 5, 466–469 (1970).Google Scholar
  19. 19.
    B. Corbas, “Rings with few zero divisors,” Math. Ann.,181, No. 1, 1–7 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. P. Zamyatin

There are no affiliations available

Personalised recommendations