Skip to main content
Log in

Activity coefficients from the emf of liquid membrane cells V. alkaline earth hexacyanoferrates (III) in aqueous solutions at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The relative mean activity coefficients of the M3[Fe(CN)6]2 salts, M=Mg, Ca, Sr, Ba, are measured down to about 5×10−6 mol-kg−1 using the liquid membrane cell method. In the dilute region these salts display negative instead of positive deviations from the limiting law, contrary to Debye-Hückel's theory predictions. An indirect method based on auxiliary emf measurements in MCl2, K3Fe(CN)6 and KCl, rather than a theory-assisted direct extrapolation to zero of the relative activity coefficients, is used to identify the actual values of the activity coefficients. The data are compared with Mayer's theory, ion-pair theory and numerical integration of the Poisson-Boltzmann equation. Best-fit coefficients of Pitzer's equation which meet the activity coefficients of the M3[Fe(CN)6]2 salts to be reproduced, are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lange and H. Streek,Z. Physik Chem. 157A, 1 (1931); E. Lange, J. Monheim, and A. L. Robinson,J. Amer. Chem. Soc. 55, 4733 (1933); E. Lange and W. Miederer,Z. Elektrochem. 60, 34 (1956) and60, 362 (1956); E. Lange and D. Secrest,Z. Elektrochem. 61, 280 (1957) and61, 470 (1957).

    Google Scholar 

  2. L. G. Hepler, J. H. Stokes, and R. H. Stokes,Trans. Faraday Soc. 61, 20 (1965);

    Google Scholar 

  3. F. H. Spedding, M. J. Pikal, and B. O. Ayers,J. Phys. Chem. 70, 2550 (1966);

    Google Scholar 

  4. A. Indelli and R. De Santis,J. Chem. Phys. 51, 2782 (1969);

    Google Scholar 

  5. A. Indelli and R. Zamboni,J. Chem. Soc. Faraday I 68, 1831 (1972);

    Google Scholar 

  6. A. Billi, F. Malatesta, R. Zamboni, and A. Indelli,J. Chem. Phys. 61, 4787 (1974);

    Google Scholar 

  7. F. Malatesta and R. Zamboni,J. Chem. Soc. Faraday I 76, 2510 (1980);

    Google Scholar 

  8. F. Malatesta, R. Zamboni, and L. Lepori,J. Solution Chem. 16, 699 (1987).

    Google Scholar 

  9. I. A. Cowperthwaite, V. K. La Mer,J. Amer. Chem. Soc. 53, 4333 (1931).

    Google Scholar 

  10. V. K. La Mer and W. G. Parks,J. Amer. Chem. Soc. 53, 2040 (1931).

    Google Scholar 

  11. F. Malatesta, A. Giacomelli, and R. Zamboni,J. Solution Chem. 23, 11 (1994).

    Google Scholar 

  12. F. Malatesta,J. Solution Chem. 24, 241 (1995).

    Google Scholar 

  13. T. H. Gronwall, V. K. La Mer, and K. Sandved,Phys. Z. 29, 358 (1928).

    Google Scholar 

  14. E. A. Guggenheim,Trans. Faraday Soc. 56, 1152 (1960);58, 86 (1962); F. Malatesta, T. Rotunno,Gazz. Chim. Ital. 113, 783 (1983).

    Google Scholar 

  15. C. W. Outhwaite,J. Chem. Soc. Faraday II 83, 949 (1987);

    Google Scholar 

  16. M. M. Martinez, L. B. Bhuiyan, and C. W. Outhwaite,J. Chem. Soc. Faraday I 86, 3383 (1990);

    Google Scholar 

  17. C. W. Outhwaite, M. Molero, and L. B. Bhuiyan,J. Chem. Soc. Faraday I 87, 3227 (1991);

    Google Scholar 

  18. C. W. Outhwaite, M. Molero, and L. B. Bhuiyan,J. Chem. Soc. Faraday I 89, 1315 (1993).

    Google Scholar 

  19. E. Mayer,J. Chem. Phys. 18, 1426 (1950); J. C. Poirier,J. Chem. Phys. 21, 965 (1953);21, 972 (1953); J. C. Rasaiah and H. L. Friedman,J. Chem. Phys. 48, 2742 (1968); F. Malatesta, T. Rotunno,Gazz. Chim. Ital. 113, 789 (1983).

    Google Scholar 

  20. J. C. Rasaiah and H. L. Friedman,J. Chem. Phys. 50, 3965 (1969);

    Google Scholar 

  21. J. C. Rasaiah,Chem. Phys. Lett. 7, 260 (1970);J. Chem. Phys. 56, 3071 (1972).

    Google Scholar 

  22. G. Stell and J. L. Lebowitz,J. Chem. Phys. 49, 3706 (1968);

    Google Scholar 

  23. E. Waisman and J. L. Lebowitz,J. Chem. Phys. 52, 4307 (1970); J. S. Hoye and G. Stell,J. Chem. Phys. 67, 439 (1977);

    Google Scholar 

  24. H. D. Anderson and D. Chandler,J. Chem. Phys. 53, 547 (1970);ibid. 54, 26 (1971) and55, 1497 (1971).

    Google Scholar 

  25. E. A. Guggenheim,Disc. Faraday Soc. 24, 53 (1957); W. G. Davies, R. G. Otter, J. E. Prue,ibid., 103; G. H. Nancollas,ibid, 108; see also,ibid., General Discussion sections p. 66, and p. 114.

    Google Scholar 

  26. J. E. Prue,Ionic Equilibria (The International Encyclopedia of Physical Chemistry and Chemical Physics 15, R. Robinson ed., Vol. 3) (Pergamon, London, 1966); M. R. Christoffersen, J. E. Prue,Trans. Faraday Soc. 66, 2878 (1970).

    Google Scholar 

  27. F. Malatesta and G. Carrara,J. Solution Chem. 21, 1251 (1992).

    Google Scholar 

  28. F. Malatesta, G. Carrara, M. P. Colombini, and A. Giacomelli,J. Solution Chem. 22, 733 (1993).

    Google Scholar 

  29. R. N. Goldberg and R. L. Nuttall,J. Phys. Chem. Ref. Data 7, 263 (1978).

    Google Scholar 

  30. B. R. Staples and R. L. Nuttal,J. Phys. Chem. Ref. Data 6, 385 (1977).

    Google Scholar 

  31. C. W. Outhwaite, Oct. 7th 1993, private communication to F. Malatesta.

  32. N. Bjerrum,Kgl. Danske Vidensk. Selsk., Mat. Pys. Medd. 7, No. 9 (1926); C. W. Davies,Ion association (Butterworths, London, 1962).

  33. K. S. Pitzer and Guillermo Mayorga,J. Solution Chem. 3, 539 (1974).

    Google Scholar 

  34. J. M. Arsuaga Ferreras,Termodinámica de Complejos de Cobalto(III) con Ligandos Diaminados en Disolución Acuosa (Doctoral Thesis, Universidad Complutense de Madrid, Madrid, 1994), p. 252.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malatesta, F., Giacomelli, A. & Zamboni, R. Activity coefficients from the emf of liquid membrane cells V. alkaline earth hexacyanoferrates (III) in aqueous solutions at 25°C. J Solution Chem 25, 61–73 (1996). https://doi.org/10.1007/BF00972759

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972759

Key Words

Navigation