Advertisement

Journal of Solution Chemistry

, Volume 25, Issue 1, pp 43–50 | Cite as

Equation of state for the NH3−H2O system

  • Zhenhao Duan
  • Nancy Møller
  • John H. Weare
Article

Abstract

An equation of state (EOS) for the NH3−H2O system has been developed. This EOS incorporates a highly accurate end-member EOS and on an empirical mixing rule. The mixing rule is based on an analogy with high order contributions to the virial expansion for mixtures. Comparison with experimental data indicates that the mixed system EOS can predict both phase equilibria and volumetric properties for this binary system with accuracy close to that of the experimental data from 50°C and 1 bar to critical temperatures and pressures.

Key Words

Equation of state chemical potential phase equilibrium density H2NH3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Truesdell,Geothermal Reservoir Technology Research Program, Abstracts of selected research projects, p. 68, 1993.Google Scholar
  2. 2.
    R. Stryjek, and J. H. Vera,Can. J. Chem. Eng. 64, 323 (1986).Google Scholar
  3. 3.
    D. S. Wong, H. Otbey, and S. I. Sandler,Ind. Eng. Chem. Res. 31, 2033 (1992).Google Scholar
  4. 4.
    Z. Duan, N. Møller, and J. H. Weare,Geochim. Cosmochim. Acta vol.56, 2605 (1992a).Google Scholar
  5. 5.
    Z. Duan, N. Møller, and J. H. Weare,Geochim. Cosmochim. Acta 56, 2619 (1992b).Google Scholar
  6. 6.
    L. N. Canjar, and F. S. Manning, (Gulf Publishing, Houston, Texas, 1967). pp 119Google Scholar
  7. 7.
    F. Din,Thermodynamic Functions of Gases, (Butterworths, London 1961).Google Scholar
  8. 8.
    J. Wucherer,J. Gesmat. Kalte-Ind. 39, 97 (1932).Google Scholar
  9. 9.
    G. Scatchard, L. F. Warburton, and J. Cody,J. Refrig. Eng. 53, 413 (1947).Google Scholar
  10. 10.
    R. A. Macriss, B. E. Eakin, and R. E. Ellington, Bulletin 34, (Institute of Gas Technology, Chicago, IL, 1964).Google Scholar
  11. 11.
    D. S. Tsiklis, L. R. Linshits, and N. P. Goryunova,J. Phy. Chem., USSR 39, 1590 (1965).Google Scholar
  12. 12.
    J. Polak, and B. C-Y. Lu,J. Chem. Eng. Data 20, 182 (1975).Google Scholar
  13. 13.
    E. M. Pawlikowski, J. Newman, and J. M. Prausnitz,Ind. Eng. Chem. Process. Des. Dev. 21, 764 (1982).Google Scholar
  14. 14.
    P. C. Gillespie, W. V. Wilding, and G. M. Wilson,Research report RR-90, (Gas Processors Association, Tulsa, Ok, 1985).Google Scholar
  15. 15.
    S. S. H. Rizvi and R. A. Heidemann,J. Chem. Eng. Data. 32, 183 (1987).Google Scholar
  16. 16.
    J. L. Guillevic, D. Richon, and H. Renon,J. Chem. Eng. Data 30, 332 (1985).Google Scholar
  17. 17.
    C. L. Sassen, and R. A. C. Kwartel,Amer. Chem. Soc. J. 35, 140 (1990).Google Scholar
  18. 18.
    T. M. Smolen, D. B. Manley, and B. E. Poling,J. Chem. Eng. Data 36, 202 (1991).Google Scholar
  19. 19.
    D. R. Lide,CRC Handbook of Chemistry and Physics, 72nd edition, (Boca Raton, Florida, 1992), p. 8.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Zhenhao Duan
    • 1
  • Nancy Møller
    • 1
  • John H. Weare
    • 1
  1. 1.Department of Chemistry0340 University of California, San DiegoLa Jolla

Personalised recommendations