Skip to main content
Log in

Volumetric properties of cyclic hydrocarbons in tetrachloromethane at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

By means of a vibrating-tube densimeter, the densities at 25°C have been determined for binary mixtures of tetrachloromethane with a liquid (cyclodecane, cis-decahydronaphthalene, trans-decahydronaphthalene, bicyclohexyl, pentane) or a solid hydrocarbon (cyclododecane, cyclopentadecane, norbornane, adamantane, octahydro-4,7-methano-1H-indene). Excess molar volumes have been obtained in the whole mole fraction range for mixtures containing a liquid hydrocarbon. For solid cycloalkanes, apparent molar volumes have been evaluated in the whole range of miscibility. The partial molar volumes at infinite dilution\(\bar V^\circ \) have been calculated for all examined cycloalkanes and compared with those of n-alkanes. The dependence of\(\bar V^\circ \) upon the size and shape of the ring or cage structure of the solute is discussed. The capability of the Flory theory to reproduce VE for these mixtures is also tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Lepori, E. Matteoli, and M. R. Tiné,J. Solution Chem. 20, 57 (1991).

    Google Scholar 

  2. A. Giannotti, L. Lepori, E. Matteoli, and B. Marongiu,Fluid Phase Equilibria 65, 275 (1991).

    Google Scholar 

  3. A. Spanedda, L. Lepori, and E. Matteoli,Fluid Phase Equilibria 69, 209 (1991).

    Google Scholar 

  4. L. Lepori, E. Matteoli, and M. R. Tiné,Fluid Phase Equilibria 87, 177 (1993).

    Google Scholar 

  5. N. Nishimura, T. Tanaka, and T. Motoyama,Can. J. Chem. 64, 2248 (1987).

    Google Scholar 

  6. J. Fischer and A. Weiss,Ber. Bunsenges. Phys. Chem. 90, 1129 (1986).

    Google Scholar 

  7. K. Chylinski and R. Stryjek,J. Chem. Thermodyn. 16, 153 (1984).

    Google Scholar 

  8. M. Costas and D. Patterson,J. Solution Chem. 11, 807 (1982).

    Google Scholar 

  9. N. Morel-Desrosiers and J. P. Morel,J. Solution Chem. 8, 579 (1979).

    Google Scholar 

  10. J. T. Edward, P. G. Farrel, and F. Shahidi,J. Phys. Chem. 82, 2310 (1978).

    Google Scholar 

  11. J. T. Edward, P. G. Farrel, and F. Shahidi,Can. J. Chem. 57, 2892 (1980).

    Google Scholar 

  12. L. Lepori and E. Matteoli,J. Chem. Thermodyn. 18, 13 (1986).

    Google Scholar 

  13. F. Malatesta, R. Zamboni, and L. Lepori,J. Solution Chem. 16, 699 (1987).

    Google Scholar 

  14. L. Lepori, M. Mengheri, and V. Mollica,J. Phys. Chem. 87, 3520 (1983).

    Google Scholar 

  15. P. Berti, L. Lepori, and E. Matteoli,Fluid Phase Equilibria 44, 285 (1989).

    Google Scholar 

  16. F. D. Rossini, K. S. Pitzer, R. L. Arnett, R. H. Braun and G. C. Pimentel,API Research Project 44 (Carnegie Press, Pittsburgh, Pa, 1953).

    Google Scholar 

  17. T. G. Bissel, G. E. Okafor, and A. G. Williamson,J. Chem. Thermodyn. 3, 393 (1971).

    Google Scholar 

  18. D. V. S. Jain, B. S. Lark, S. S. Chamak, and P. Chander,Ind J. Chem. 8, 66 (1970).

    Google Scholar 

  19. L. G. Longsworth,J. Colloid Interface Sci. 22, 3 (1966).

    Google Scholar 

  20. I. Cibulka, J. Dubnova, and R. Holub,J. Chem. Thermodyn. 14, 901 (1982).

    Google Scholar 

  21. T. Boublik, V. T. Lam, S. Murakami, and G. C. Benson,J. Phys. Chem. 73, 2356 (1969)

    Google Scholar 

  22. O. Kiyohara and G. C. Benson,J. Chem. Thermodyn. 9, 807 (1977).

    Google Scholar 

  23. M. L. Martin and L. Symons,J. Chem. Thermodyn. 13, 81 (1981).

    Google Scholar 

  24. I. Cibulka, M. B. Ewing, and M. L. McGlashan,J. Chem. Thermodyn. 15, 49 (1983).

    Google Scholar 

  25. J. A. Bondi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  26. J. A. Bondi,Physical Properties of Molecular Crystals, Liquid and Glasses (Wiley, New York, 1968).

    Google Scholar 

  27. R. F. W. Bader, M. T. Carrol, J. R. Cheeseman, and C. Chang,J. Am. Chem. Soc. 109, 7968 (1987).

    Google Scholar 

  28. A. Gavezzotti,J. Am. Chem. Soc. 105, 5220 (1983).

    Google Scholar 

  29. A. Y. Meyer,J. Chem. Soc. Perkin Trans. II 1161 (1985).

    Google Scholar 

  30. A. Abe and P. J. Flory,J. Am. Chem. Soc. 87, 1838 (1965).

    Google Scholar 

  31. P. J. Flory,J. Am. Chem. Soc. 87, 1833 (1965).

    Google Scholar 

  32. C. Christensen, J. Gmehling, P. Rasmussen, and U. Weidlich,Heats of Mixing Data Collection. Binary Systems. Chemistry Data Series, Vol. III, Part 1 (Dechema, Frankfurt am Main, 1984). Original references are quoted therein.

    Google Scholar 

  33. B. Marongiu, S. Porcedda, L. Lepori, and E. Matteoli, in preparation.

  34. A. J. Treszczanowicz and G. C. Benson,Thermochimica Acta 179, 39 (1991).

    Google Scholar 

  35. E. F. Meyer and C. A. Hotz,J. Chem. Eng. Data 21, 274 (1976).

    Google Scholar 

  36. G. Manzini and V. Crescenzi,Gazzetta 104, 51 (1974).

    Google Scholar 

  37. G. C. Benson and J. Singh,J. Phys. Chem. 72, 1345 (1968).

    Google Scholar 

  38. G. C. Benson, S. Murakami, V. T. Lam, and J. Singh,Can. J. Chem. 48, 211 (1970).

    Google Scholar 

  39. T. M. Letcher and R. C. Baxter,J. Solution Chem. 18, 65 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matteoli, E., Lepori, L. & Spanedda, A. Volumetric properties of cyclic hydrocarbons in tetrachloromethane at 25°C. J Solution Chem 23, 619–638 (1994). https://doi.org/10.1007/BF00972749

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972749

Key Words

Navigation