Journal of Solution Chemistry

, Volume 23, Issue 5, pp 619–638 | Cite as

Volumetric properties of cyclic hydrocarbons in tetrachloromethane at 25°C

  • Enrico Matteoli
  • Luciano Lepori
  • Andrea Spanedda
Article

Abstract

By means of a vibrating-tube densimeter, the densities at 25°C have been determined for binary mixtures of tetrachloromethane with a liquid (cyclodecane, cis-decahydronaphthalene, trans-decahydronaphthalene, bicyclohexyl, pentane) or a solid hydrocarbon (cyclododecane, cyclopentadecane, norbornane, adamantane, octahydro-4,7-methano-1H-indene). Excess molar volumes have been obtained in the whole mole fraction range for mixtures containing a liquid hydrocarbon. For solid cycloalkanes, apparent molar volumes have been evaluated in the whole range of miscibility. The partial molar volumes at infinite dilution\(\bar V^\circ \) have been calculated for all examined cycloalkanes and compared with those of n-alkanes. The dependence of\(\bar V^\circ \) upon the size and shape of the ring or cage structure of the solute is discussed. The capability of the Flory theory to reproduce VE for these mixtures is also tested.

Key Words

Density excess volume partial molar volume alkanes cycloalkanes tetrachloromethane Flory theory group contribution solvation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Lepori, E. Matteoli, and M. R. Tiné,J. Solution Chem. 20, 57 (1991).Google Scholar
  2. 2.
    A. Giannotti, L. Lepori, E. Matteoli, and B. Marongiu,Fluid Phase Equilibria 65, 275 (1991).Google Scholar
  3. 3.
    A. Spanedda, L. Lepori, and E. Matteoli,Fluid Phase Equilibria 69, 209 (1991).Google Scholar
  4. 4.
    L. Lepori, E. Matteoli, and M. R. Tiné,Fluid Phase Equilibria 87, 177 (1993).Google Scholar
  5. 5.
    N. Nishimura, T. Tanaka, and T. Motoyama,Can. J. Chem. 64, 2248 (1987).Google Scholar
  6. 6.
    J. Fischer and A. Weiss,Ber. Bunsenges. Phys. Chem. 90, 1129 (1986).Google Scholar
  7. 7.
    K. Chylinski and R. Stryjek,J. Chem. Thermodyn. 16, 153 (1984).Google Scholar
  8. 8.
    M. Costas and D. Patterson,J. Solution Chem. 11, 807 (1982).Google Scholar
  9. 9.
    N. Morel-Desrosiers and J. P. Morel,J. Solution Chem. 8, 579 (1979).Google Scholar
  10. 10.
    J. T. Edward, P. G. Farrel, and F. Shahidi,J. Phys. Chem. 82, 2310 (1978).Google Scholar
  11. 11.
    J. T. Edward, P. G. Farrel, and F. Shahidi,Can. J. Chem. 57, 2892 (1980).Google Scholar
  12. 12.
    L. Lepori and E. Matteoli,J. Chem. Thermodyn. 18, 13 (1986).Google Scholar
  13. 13.
    F. Malatesta, R. Zamboni, and L. Lepori,J. Solution Chem. 16, 699 (1987).Google Scholar
  14. 14.
    L. Lepori, M. Mengheri, and V. Mollica,J. Phys. Chem. 87, 3520 (1983).Google Scholar
  15. 15.
    P. Berti, L. Lepori, and E. Matteoli,Fluid Phase Equilibria 44, 285 (1989).Google Scholar
  16. 16.
    F. D. Rossini, K. S. Pitzer, R. L. Arnett, R. H. Braun and G. C. Pimentel,API Research Project 44 (Carnegie Press, Pittsburgh, Pa, 1953).Google Scholar
  17. 17.
    T. G. Bissel, G. E. Okafor, and A. G. Williamson,J. Chem. Thermodyn. 3, 393 (1971).Google Scholar
  18. 18.
    D. V. S. Jain, B. S. Lark, S. S. Chamak, and P. Chander,Ind J. Chem. 8, 66 (1970).Google Scholar
  19. 19.
    L. G. Longsworth,J. Colloid Interface Sci. 22, 3 (1966).Google Scholar
  20. 20.
    I. Cibulka, J. Dubnova, and R. Holub,J. Chem. Thermodyn. 14, 901 (1982).Google Scholar
  21. 21.
    T. Boublik, V. T. Lam, S. Murakami, and G. C. Benson,J. Phys. Chem. 73, 2356 (1969)Google Scholar
  22. 22.
    O. Kiyohara and G. C. Benson,J. Chem. Thermodyn. 9, 807 (1977).Google Scholar
  23. 23.
    M. L. Martin and L. Symons,J. Chem. Thermodyn. 13, 81 (1981).Google Scholar
  24. 24.
    I. Cibulka, M. B. Ewing, and M. L. McGlashan,J. Chem. Thermodyn. 15, 49 (1983).Google Scholar
  25. 25.
    J. A. Bondi,J. Phys. Chem. 68, 441 (1964).Google Scholar
  26. 26.
    J. A. Bondi,Physical Properties of Molecular Crystals, Liquid and Glasses (Wiley, New York, 1968).Google Scholar
  27. 27.
    R. F. W. Bader, M. T. Carrol, J. R. Cheeseman, and C. Chang,J. Am. Chem. Soc. 109, 7968 (1987).Google Scholar
  28. 28.
    A. Gavezzotti,J. Am. Chem. Soc. 105, 5220 (1983).Google Scholar
  29. 29.
    A. Y. Meyer,J. Chem. Soc. Perkin Trans. II 1161 (1985).Google Scholar
  30. 30.
    A. Abe and P. J. Flory,J. Am. Chem. Soc. 87, 1838 (1965).Google Scholar
  31. 31.
    P. J. Flory,J. Am. Chem. Soc. 87, 1833 (1965).Google Scholar
  32. 32.
    C. Christensen, J. Gmehling, P. Rasmussen, and U. Weidlich,Heats of Mixing Data Collection. Binary Systems. Chemistry Data Series, Vol. III, Part 1 (Dechema, Frankfurt am Main, 1984). Original references are quoted therein.Google Scholar
  33. 33.
    B. Marongiu, S. Porcedda, L. Lepori, and E. Matteoli, in preparation.Google Scholar
  34. 34.
    A. J. Treszczanowicz and G. C. Benson,Thermochimica Acta 179, 39 (1991).Google Scholar
  35. 35.
    E. F. Meyer and C. A. Hotz,J. Chem. Eng. Data 21, 274 (1976).Google Scholar
  36. 36.
    G. Manzini and V. Crescenzi,Gazzetta 104, 51 (1974).Google Scholar
  37. 37.
    G. C. Benson and J. Singh,J. Phys. Chem. 72, 1345 (1968).Google Scholar
  38. 38.
    G. C. Benson, S. Murakami, V. T. Lam, and J. Singh,Can. J. Chem. 48, 211 (1970).Google Scholar
  39. 39.
    T. M. Letcher and R. C. Baxter,J. Solution Chem. 18, 65 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Enrico Matteoli
    • 1
  • Luciano Lepori
    • 1
  • Andrea Spanedda
    • 1
  1. 1.CNRIstituto di Chimica Quantistica ed Energetica MolecolarePisa(Italy)

Personalised recommendations