Skip to main content
Log in

Thermodynamics of the tautomeric, hydration and hemiacetalization of 5-deoxypyridoxal and pyridoxal in water-dioxane mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The resolution of electronic spectra using log-normal curves has permitted a quantitative description of the equilibria of pyridoxal, one of the vitamin B6 molecules, and of the related 5-deoxypyridoxal in solution. Tautomeric, hydration and hemiacetalization equilibrium constants for water-dioxane mixtures of these compounds are reported (0–70% weight fraction in dioxane) at temperatures ranging from 10°C to 50°C. These results provide the standard thermodynamic function changes for the indicated processes in the different mixtures studied. The aldehyde content in the two compounds increases concomitantly with the dioxane content of the solution and also when it changes from the cationic to the anionic species. 5-deoxypyridoxal becomes significantly more hydrated in its more protonated form, K h (+a)/K h (±a)≈7–8, as do other aldehydes. Hemiacetalization in pyridoxal follow a similar pattern, K he (±a)/K he (a)≈20–30, due principally to differences in the enthalpy contribution. Hemiacetalization is favored over hydration by ∼20.6 kJ-mol−1 in water solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Christen and D. E. Metzler,Transaminases, (Wiley, New York, 1985), p. 65.

    Google Scholar 

  2. E. E. Snell, inVitamin B-6 Pyridoxal Phosphate: Chemical, Biochemical and Medical Aspects, D. Dolphin, R. Poulson and O. Avramovic, eds., Part. A (Wiley, New York, 1986).

    Google Scholar 

  3. C. M. Metzler, A. Cahill, and D. E. Metzler,J. Am. Chem. Soc. 102, 6075 (1980).

    Google Scholar 

  4. D. E. Metzler, C. M. Harris, R. J. Johnson, C. B. Siano, and J. A. Thomson,Biochemistry 12, 5377 (1973).

    Google Scholar 

  5. C. M. Harris, R. J. Johnson, and D. E. Metzler,Biochim. Biophys. Acta 421, 181 (1976).

    Google Scholar 

  6. M. Cortijo, J. Llor, and J. M. Sanchez-Ruiz,J. Biol. Chem. 263, 17960 (1988).

    Google Scholar 

  7. J. M. Sanchez-Ruiz, J. Llor, and M. Cortijo,J. Chem. Soc. Perkin Trans. II 2047 (1984).

    Google Scholar 

  8. J. M. Sanchez-Ruiz, S. Asensio, J. Llor, and M. Cortijo,J. Chem. Soc. Perkin Trans. II 169 (1987).

    Google Scholar 

  9. J. Llor, J. M. Sanchez-Ruiz, and M. Cortijo,J. Chem. Soc. in Perkin Trans. II 951 (1988).

    Google Scholar 

  10. A. R. Katritzky and M. Karelson,J. Am. Chem. Soc. 113, 1561 (1991).

    Google Scholar 

  11. P. Cieplak, P. Bash, U. C. Singh, and P. A. Kollman,J. Am. Chem. Soc. 109, 6283 (1987).

    Google Scholar 

  12. K. Nagano and D. E. Metzler,J. Am. Chem. Soc. 89, 2891 (1967).

    Google Scholar 

  13. R. J. Johnson and D. E. Metzler,Methods Enzymol. 18A, 433 (1970).

    Google Scholar 

  14. D. E. Metzler, C. M. Harris, R. L. Reeves, W. H. Lawton, and M. S. Maggio,Anal. Chem. 49, 864A (1977).

    Google Scholar 

  15. C. Iwata,Biochem. Prep. 12, 117 (1968).

    Google Scholar 

  16. N. Nakamoto and A. E. Martell,J. Am. Chem. Soc. 81, 5863 (1959).

    Google Scholar 

  17. E. A. Peterson and H. A. Sober,J. Am. Chem. Soc. 76, 169 (1954).

    Google Scholar 

  18. W. Korytnyk and R. P. Singh,J. Am. Chem. Soc. 85, 2813 (1963).

    Google Scholar 

  19. I. D. Lapper, H. H. Mantsch, and I. C. P. Smith,Can. J. Chem. 53, 2406 (1975).

    Google Scholar 

  20. K. Nagano and D. E. Metzler,J. Am. Chem. Soc. 89, 2891 (1967).

    Google Scholar 

  21. J. Llor, J. M. Sánchez-Ruiz, M. Cortijo, and B. Clares,An. Quim. 80, 701 (1984).

    Google Scholar 

  22. J. M. Sanchez-Ruiz, J. Llor, E. Lopez-Cantarero, and M. Cortijo,An. Quim. 80, 708 (1984).

    Google Scholar 

  23. W. L. Marshall and A. S. Quist,Proc. Natl. Acad. Sci. 58, 901 (1967).

    Google Scholar 

  24. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 1536 (1968).

    Google Scholar 

  25. W. L. Marshall,J. Phys. Chem. 74, 346 (1970).

    Google Scholar 

  26. E. C. W. Clarke, and D. N. Glew,Trans. Faraday Soc. 62, 539 (1966).

    Google Scholar 

  27. R. A. McClelland, P. Sukhai, K. M. Engell, and P. E. Sorensen,Can. J. Chem. 72, 2333 (1994).

    Google Scholar 

  28. S. Cabani, P. Gianni, and E. Matteoli,J. Phys. Chem. 76, 2959 (1972).

    Google Scholar 

  29. V. Okano, H. E. Toma, and L. do Amaral,J. Org. Chem. 46, 1018 (1981).

    Google Scholar 

  30. K. B. Wiberg, K. M. Morgan, and H. Maltz,J. Am. Chem. Soc. 116, 11067 (1994).

    Google Scholar 

  31. Y. Pocker, J. E. Meany, and B. J. Nist,J. Phys. Chem. 71, 4509 (1967).

    Google Scholar 

  32. J. Llor and S. B. Asensio,J. Solution Chem. 24, 1293 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llor, J., Asensio, S.B. Thermodynamics of the tautomeric, hydration and hemiacetalization of 5-deoxypyridoxal and pyridoxal in water-dioxane mixtures. J Solution Chem 25, 667–679 (1996). https://doi.org/10.1007/BF00972681

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972681

Key Words

Navigation