Skip to main content
Log in

Thermodynamic properties of peptide solutions: 14. Partial molar expansibilities and isothermal compressibilities of some glycyl dipeptides in aqueous solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The partial molar volumes at infinite dilution have been obtained for a series of glycyl dipeptides in aqueous solution at 15, 30, and 35°C. These results have been combined with data obtained at 25°C, that were reported earlier, to evaluate the partial molar expansibilities at infinite dilution for the dipeptides at 25°C. These quantities, along with the partial molar heat capacities and isentropic compressibilities at infinite dilution that were reported in previous studies, were used to derive the partial molar isothermal compressibilities at infinite dilution for the glycyl dipeptides at 25°C. The results obtained are rationalized in terms of the hydration of the constituent groups of the dipeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Makhatadze and P. L. Privalov,J. Mol. Biol. 232, 639 (1993).

    Google Scholar 

  2. J. T. Edsall and H. A. McKenzie,Adv. Biophys. 16, 53 (1983).

    Google Scholar 

  3. G. Némethy, W. J. Peer, and H. A. Scheraga,Ann. Rev. Biophys. Bioeng. 10, 459 (1981).

    Google Scholar 

  4. G. R. Hedwig and H. Høiland,Biophys. Chem. 49, 175 (1994).

    Google Scholar 

  5. G. R. Hedwig,J. Chem. Soc. Faraday Trans. 89, 2761 (1993).

    Google Scholar 

  6. J. F. Reading and G. R. Hedwig,J. Solution Chem. 18, 159 (1989).

    Google Scholar 

  7. G. I. Makhatadze, S. J. Gill, and P. L. Privalov,Biophys. Chem. 38, 33 (1990).

    Google Scholar 

  8. T. V. Chalikian, A. P. Saravazyan, T. Funck, and K. J. Breslauer,Biopolymers 34, 541 (1994).

    Google Scholar 

  9. C. Jolicoeur and J. Boileau,Can. J. Chem. 56, 2707 (1978).

    Google Scholar 

  10. A. K. Mishra and J. C. Ahluwalia,J. Phys. Chem. 88, 84 (1984).

    Google Scholar 

  11. T. V. Chalikian, A. P. Sarvazyan, and K. J. Breslauer,Biophys. Chem. 51, 89 (1994).

    Google Scholar 

  12. H. Høiland, inThermodynamic Data for Biochemistry and Biotechnology, H.-J. Hinz, ed., (Springer-Verlag, Berlin, 1986), Chap. 4.

    Google Scholar 

  13. G. R. Hedwig and H. Høiland,J. Solution Chem. 20, 1113 (1991).

    Google Scholar 

  14. S. Cabani, G. Conti, E. Matteoli, and M. R. Tine,J. Chem. Soc. Faraday Trans. 77, 2385 (1981).

    Google Scholar 

  15. G. I. Makhatadze, V. N. Medvedkin, and P. L. Privalov,Biopolymers 30, 1001 (1990).

    Google Scholar 

  16. J. F. Reading, I. D. Watson, and G. R. Hedwig,J. Chem. Thermodyn. 22, 159 (1990).

    Google Scholar 

  17. G. Horváth-Szabó, H. Høiland, and E. Høgseth,Rev. Sci. Instrum. 65, 1644 (1994).

    Google Scholar 

  18. J. C. R. Reis,J. Chem. Soc. Faraday Trans. 2 78, 1595 (1982).

    Google Scholar 

  19. J. E. Desnoyers and P. R. Philip,Can. J. Chem. 50, 1094 (1972).

    Google Scholar 

  20. M. K. Kumaran, I. D. Watson, and G. R. Hedwig,Aust. J. Chem. 36, 1813 (1983).

    Google Scholar 

  21. J. F. Reading and G. R. Hedwig,J. Chem. Soc. Faraday Trans. 86, 3117 (1990).

    Google Scholar 

  22. G. R. Hedwig,J. Solution Chem. 17, 383 (1988).

    Google Scholar 

  23. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  24. A. W. Hakin, M. M. Duke, L. L. Groft, J. L. Marty, and M. L. Rushfeldt,Can. J. Chem. 73, 725 (1995).

    Google Scholar 

  25. N. Poklar, M. Senegacnik, F. Sveglj, and S. Lapanje,Int. J. Peptide Protein Res. 39, 415 (1992).

    Google Scholar 

  26. M. Iqbal and M. Mateeullah,Can. J. Chem. 68, 725 (1990).

    Google Scholar 

  27. R. Bhat and J. C. Ahluwalia,J. Phys. Chem. 89, 1099 (1985).

    Google Scholar 

  28. S. Cabani, G. Conti, E. Matteoli, and M. R. Tine,J. Chem. Soc. Faraday I 77, 2385 (1981).

    Google Scholar 

  29. G. R. Hedwig,J. Phys. Chem. 99, 12063 (1995).

    Google Scholar 

  30. A. A. Yayanos,J. Phys. Chem. 97, 13027 (1993).

    Google Scholar 

  31. D. P. Kharakoz,Biophys. Chem. 34, 115 (1989).

    Google Scholar 

  32. T. V. Chalikian, A. P. Sarvazyan, and K. J. Breslauer,J. Phys. Chem. 97, 13017 (1993).

    Google Scholar 

  33. J. T. Edward and P. G. Farrell,Can. J. Chem. 53, 2965 (1975).

    Google Scholar 

  34. S. Terasawa, H. Itsuki, and S. Arakawa,J. Phys. Chem. 79, 2345 (1975).

    Google Scholar 

  35. G. Roux, G. Perron, and J. E. Desnoyers,Can. J. Chem. 56, 2808 (1978).

    Google Scholar 

  36. A. Bondi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  37. J. T. Edward,J. Chem. Educ. 47, 261 (1970).

    Google Scholar 

  38. D. P. Kharakoz,J. Solution Chem. 21, 569 (1992).

    Google Scholar 

  39. J. T. Edward, P. G. farrell, and F. Shahidi,J. Chem. Soc. Faraday Trans. I 77, 2377 (1981).

    Google Scholar 

  40. F. Vovelle, M. Genest, and M. Ptak, inIntermolecular Forces, B. Pullman, ed., (D. Reidel Dordrecht, 1981), p. 299.

    Google Scholar 

  41. A. W. Hakin, M. M. Duke, S. A. Klassen, R. M. McKay, and K. E. Preuss,Can. J. Chem. 72, 362 (1994).

    Google Scholar 

  42. A. W. Hakin, M. M. Duke, J. L. Marty, and K. E. Preuss,J. Chem. Soc. Faraday Trans. 90, 2027 (1994).

    Google Scholar 

  43. M. M. Duke, A. W. Hakin, R. M. McKay, and K. E. Preuss,Can. J. Chem. 72, 1489 (1994).

    Google Scholar 

  44. M. Sakurai, K. Nakamura, and K. Nitta,Bull. Chem. Soc. Jpn. 67, 1580 (1994).

    Google Scholar 

  45. L. G. Hepler,Can. J. Chem. 47, 4613 (1969).

    Google Scholar 

  46. M. Sakurai,Bull. Chem. Soc. Jpn. 60, 1 (1987).

    Google Scholar 

  47. J. L. Neal and D. A. Goring,J. Phys. Chem. 74, 658 (1970).

    Google Scholar 

  48. T. Ogawa, M. Yasuda, and K. Mizutani,Bull. Chem. Soc. Jpn. 57, 662 (1984).

    Google Scholar 

  49. J. G. Mathieson and B. E. Conway,J. Solution Chem. 3, 455 (1974).

    Google Scholar 

  50. D. P. Kharakoz,J. Phys. Chem. 95, 5634 (1991).

    Google Scholar 

  51. B. E. Conway and R. E. Verrall,J. Phys. Chem. 70, 3952 (1966).

    Google Scholar 

  52. B. E. Conway and E. Ayranci,J. Chem. Thermodyn. 20, 9 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedwig, G.R., Hastie, J.D. & Høiland, H. Thermodynamic properties of peptide solutions: 14. Partial molar expansibilities and isothermal compressibilities of some glycyl dipeptides in aqueous solution. J Solution Chem 25, 615–633 (1996). https://doi.org/10.1007/BF00972678

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972678

Key Words

Navigation