Skip to main content
Log in

Partition coefficients of ω-phenylalkanols between water and liposome membranes of phospholipids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

For the liposome of two types of phospholipids (zwitterionic dipalmitoyl-phosphatidylcholine (DPPC) and anionic dimyristoylphosphatidic acid (DMPA)), the partition coefficient K X for partition of homologous ω-phenylalkanols (C6H5(CH2) mp OH; m p =0–8) between bulk water and the liposome membrane was determined on the basis of the gel to liquid crystalline phase transition temperature T m of the liposome membrane. The plot of log K X vs. m p gave a break at m p =7 for both phospholipids, and a second break at m p =4 was observed for DPPC. The local polarity of the surface region and the orderliness of phospholipid molecules in the liposome membrane were estimated from ESR spectra of two spin probes solubilized in the membrane. The results suggest that the hydration of DPPC liposome membrane is relatively restricted to its surface region, but for DMPA the hydration spreads not only along the surface but also to the inside of the membrane. The main factor controlling the partitioning of the alkanols is the local polarity. The higher alkanols (m p =7, 8) are solubilized not only in the liquid crystalline phase but also in the gel phase, although the other lower alkanols are solubilized in the liquid phase only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Hill,Biochim. Biophys. Acta 356, 117 (1974).

    Google Scholar 

  2. H. Kamaya, S. Kaneshina, and I. Ueda,Biochim. Biophys. Acta 646, 135 (1981).

    Google Scholar 

  3. E. S. Rowe,Biochemistry 22, 3299 (1983).

    Google Scholar 

  4. A. G. Lee,Biochemistry 15, 2448 (1976).

    Google Scholar 

  5. P. Seeman,Phamacol. Rev. 24, 583 (1972).

    Google Scholar 

  6. H. Kamaya, N. Matsubayashi, and I. Ueda,J. Phys. Chem. 88, 797 (1984).

    Google Scholar 

  7. M. J. Pringle and K. W. Miller,Biochemistry 18, 3314 (1979).

    Google Scholar 

  8. E. S. Rowe,Mol. Pharmacol. 22, 130 (1982).

    Google Scholar 

  9. J. R. Trudell, W. L. Hubbell, and E. N. Cohen,Biochim. Biophys. Acta 291, 328 (1973).

    Google Scholar 

  10. T. Yamaguchi, M. Koga, Y. Fujita, and E. Kimoto,J. Biochem. 91, 1299 (1982).

    Google Scholar 

  11. H. H. Wang, J. Earnest, and H. P. Limbacher,Proc. Natl. Acad. Sci. U. S. A. 80, 5297 (1983).

    Google Scholar 

  12. J. D. Castle and W. L. Hubbell,Biochemistry 15, 4818 (1976).

    Google Scholar 

  13. M. Manabe, K. Shirahama, and M. Koda,Bull. Chem. Soc. Jpn. 49, 2904 (1976).

    Google Scholar 

  14. A. S. Waggoner, A. D. Keith, and O. H. Griffith,J. Phys. Chem. 72, 4129 (1968).

    Google Scholar 

  15. T. Inoue, K. Miyakawa, and R. Shimozawa,Chem. Phys. Lipids 42, 261 (1986).

    Google Scholar 

  16. D. Marsh,CRC Handbook of Lipid Bilayers (CRC Press, 1990).

  17. H. Kawamura, M. Manabe, Y. Miyamoto, Y. Fujita, and S. Tokunaga,J. Phys. Chem. 93, 5536 (1989).

    Google Scholar 

  18. B. R. Knauer and J. J. Napier,J. Am. Chem. Soc. 98, 4395 (1976).

    Google Scholar 

  19. H. Yoshioka,J. Am. Chem. Soc. 101, 28 (1979).

    Google Scholar 

  20. M. F. Ottaviani, P. Baglioni, and G. Martini,J. Phys. Chem. 87, 3146 (1983).

    Google Scholar 

  21. P. Baglioni, E. R. Minten, L. Dei, and E. Ferroni,J. Phys. Chem. 94, 8218 (1990).

    Google Scholar 

  22. S. Ristori and G. Martini,Langmuir 8, 1937 (1992).

    Google Scholar 

  23. F. M. Menger,Acc. Chem. Res. 12, 111 (1979).

    Google Scholar 

  24. S. Schreier-Muccillo, D. Marsh, H. Dugas, H. Schneider, and I. C. P. Smith,Chem. Phys. Lipids 10, 11 (1973).

    Google Scholar 

  25. H. Kawamura, M. Manabe, T. Tokunoh, H. Saiki, and S. Tokunaga,J. Solution Chem. 20, 817 (1991).

    Google Scholar 

  26. M. Manabe, H. Kawamura, G. Sugihara, and M. Tanaka,Bull. Chem. Soc. Jpn. 61, 1551 (1988).

    Google Scholar 

  27. T. Inoue, K. Fukushima, and R. Shimozawa,Bull. Chem. Soc. Jpn. 61, 1565 (1988).

    Google Scholar 

  28. H. Kawamura, M. Manabe, H. Saiki, and S. Tokunaga,Mem. Niihama Natl. Coll. Tech. 28, 84 (1992).

    Google Scholar 

  29. M. Abu-Hamdiyyah,J. Phys. Chem. 90, 1345 (1986).

    Google Scholar 

  30. R. F. Rekker,The Hydrophobic Fragmental Constant (Elsevior, 1977).

  31. Unpublished data.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawamura, H., Manabe, M., Yamashita, R. et al. Partition coefficients of ω-phenylalkanols between water and liposome membranes of phospholipids. J Solution Chem 23, 85–100 (1994). https://doi.org/10.1007/BF00972611

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972611

Key Words

Navigation