Skip to main content
Log in

Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An equipment for the determination of mutual diffusion coefficients using the Taylor's dispersion technique is described. The radius of the capillary was determined with the help of various calibration methods. Diffusion coefficients of aqueous tetraalkylammonium perchlorates, Me4NClO4, and Et4NClO4, were measured at 25°C in the concentration range 10−3 to 5×10−2 mol-dm−3, and the slightly soluble Pr4NClO4 up to 1×10−2 mol-dm−3. The slope of linear plots ofD vs. \(\sqrt c \) is in agreement with theory, in contrast to the limiting valuesD 0, which all deviate by about −5% from the Nernst-Hartley values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Leaist and L. Hao,J. Solution Chem. 21, 345 (1992).

    Google Scholar 

  2. H. J. V. Tyrrell and K. R. Harris,Diffusion in Liquids, (Butterworths London, 1984).

    Google Scholar 

  3. K. R. Harris,J. Solution Chem. 20, 595 (1991).

    Google Scholar 

  4. A. Alizadeh, C. A. Nieto de Castro, and W. A. Wakeham,Int. J. Thermophys. 1, 243 (1980).

    Google Scholar 

  5. W. A. Wakeham,Faraday Symp. Chem. Soc. 15, 145 (1980).

    Google Scholar 

  6. K. C. Pratt and W. A. Wakeham,Proc. R. Soc. London A336, 393 (1974).

    Google Scholar 

  7. K. C. Pratt and W. A. Wakeham,Proc. R. Soc. London A342, 401 (1975).

    Google Scholar 

  8. K. C. Pratt and W. A. Wakeham,J. Chem. Soc. Faraday Trans. 2 73, 997 (1977).

    Google Scholar 

  9. G. Taylor,Proc. R. Soc. London A219, 186 (1953).

    Google Scholar 

  10. G. Taylor,Proc. R. Soc. London A223, 446 (1954).

    Google Scholar 

  11. G. Taylor,Proc. R. Soc. London A225, 473 (1954).

    Google Scholar 

  12. R. Aris,Proc. R. Soc. London A235, 67 (1956).

    Google Scholar 

  13. D. G. Leaist,J. Phys. Chem. 94, 5180 (1990).

    Google Scholar 

  14. R. Wachter and J. Barthel,Ber. Bunsenges. Phys. Chem. 83, 634 (1979).

    Google Scholar 

  15. V. Daniel and J. G. Albright,J. Solution Chem. 20, 633 (1991).

    Google Scholar 

  16. H. S. Harned and R. L. Nuttall,J. Am. Chem. Soc. 69, 736 (1947).

    Google Scholar 

  17. J. Barthel, J. J. Seidl, C. M. Lohr, and H. J. Gores, in preparation.

  18. L. J. Gosting and D. F. Akeley,J. Am. Chem. Soc. 74, 2058 (1952).

    Google Scholar 

  19. T. Gabler, A. Paschke, and G. Schüürmann,J. Chem. Eng. Data 41, 33 (1996).

    Google Scholar 

  20. L. Hao and D. G. Leaist,J. Phys. Chem. 97, 1464 (1993).

    Google Scholar 

  21. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes, (Cambridge University Press, New York, 1986).

    Google Scholar 

  22. L. A. M. Janssen,Chem. Ing. Sci. 31, 215 (1976).

    Google Scholar 

  23. T. Funazukuri, J. Fukuda, N. Nishimoto, and N. Wakao,Kagaku Kogaku Ronbunshu 19, 1157 (1993).

    Google Scholar 

  24. Borland,Turbo Pascal-Mathe Toolbox, 2. Auflage (München, 1990).

  25. W. Loh, C. A. Tonegutti, and P. L. Volpe,J. Chem. Soc. Faraday Trans. 89, 113 (1993).

    Google Scholar 

  26. T. Tominaga, K. Tanabe, and J. Takanaka,J. Solution Chem. 13, 563 (1984).

    Google Scholar 

  27. K. R. Harris, T. Goscinska, and H. N. Lam,J. Chem. Soc. Faraday Trans. 89, 1969 (1993).

    Google Scholar 

  28. M. L. Matos Lopes, C. A. Nieto de Castro, and C. M. Padrel de Oliveira,Fluid Phase Equilibria 36, 195 (1987).

    Google Scholar 

  29. L. Onsager and R. M. Fuoss,J. Phys. Chem. 26, 2689 (1932).

    Google Scholar 

  30. D. F. Evans and R. L. Kay,J. Phys. Chem. 70, 366 (1966).

    Google Scholar 

  31. A. D'Aprano,J. Phys. Chem. 75, 3290 (1971).

    Google Scholar 

  32. D. G. Miller and J. Pikal,J. Solution Chem. 1, 111 (1972).

    Google Scholar 

  33. J. G. Albright and D. G. Miller,J. Phys. Chem. 76, 1853 (1972).

    Google Scholar 

  34. D. G. Miller,J. Phys. Chem. 70, 2639 (1966).

    Google Scholar 

  35. H. S. Harned and C. L. Hildreth,J. Am. Chem. Soc. 73, 650 (1951).

    Google Scholar 

  36. R. C. Castillo and C. Garza,Int. J. Thermophys. 14, 1145 (1993).

    Google Scholar 

  37. H. S. Harned, H. W. Parker, and M. Blander,J. Am. Chem. Soc. 77, 2071 (1955).

    Google Scholar 

  38. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions 3rd. edn. (Reinhold Publ. Corp., New York, 1958).

    Google Scholar 

  39. J. Torrent and F. Sanz,Port. Electrochim. Acta 4, 51 (1986).

    Google Scholar 

  40. R. Bury and J. C. Justice,J. Chim. Phys. 64, 1491 (1967).

    Google Scholar 

  41. F. Accascina, M. Goffredi, and R. Triolo,Z. Phys. Chem. N. F. 81, 148 (1972).

    Google Scholar 

  42. L. G. Longsworth,J. Am. Chem. Soc. 54, 2741 (1932).

    Google Scholar 

  43. H. M. Daggett, E. J. Bair, and C. A. Kraus,J. Am. Chem. Soc. 73, 799 (1951).

    Google Scholar 

  44. J. H. Jones,J. Am. Chem. Soc. 67, 855 (1945).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthel, J., Gores, H.J., Lohr, C.M. et al. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J Solution Chem 25, 921–935 (1996). https://doi.org/10.1007/BF00972589

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972589

Key Words

Navigation