Journal of Solution Chemistry

, Volume 25, Issue 3, pp 295–302 | Cite as

Solubility of benzil in binary alkane + dibutyl ether solvent mixtures. Comparison of predictive expressions derived from the nearly ideal binary solvent model

  • Mary E. R. McHale
  • Ann-Sofi M. Kauppila
  • Joyce R. Powell
  • Pablo OteroJr.
  • Melani Jayasekera
  • William E. AcreeJr.
Article

Abstract

Experimental solubilities are reported for benzil dissolved in six binary mixtures containing dibutyl ether with hexane, heptane, octane, cyclohexane, methylcyclohexane, and 2,2,4-trimethylpentane at 25°C. Results of these measurements are compared to the predictions of equations developed previously for solubility in systems of nonspecific interactions. The most successful equation in terms of goodness of fit involved a volume fraction average of the excess Gibbs energies relative to the Flory-Huggins model, and predicted the experimental solubilities in the six systems studied to within an overall average absolute deviation of 3.4% and with a maximum deviation of 6.0%.

Key Words

Benzil solubilities binary solvent mixtures predictive expressions solubility predictions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Acree, Jr.,Polycyclic Aromatic Hydrocarbons in Pure and Binary Solvents. Vol. 54 inIUPAC Solubility Data Series (Oxford University Press: Oxford, United Kingdom, 1994).Google Scholar
  2. 2.
    W. E. Acree, Jr.,Polycyclic Aromatic Hydrocarbons: Binary Nonaqueous Systems: Part 1 (Solutes A-E). Vol. 58 inIUPAC Solubility Data Series (Oxford University Press: Oxford, United Kingdom, 1995).Google Scholar
  3. 3.
    W. E. Acree, Jr.,Polycyclic Aromatic Hydrocarbons: Binary Nonaqueous Systems: Part 2 (Solutes F-Z). Vol. 59 inIUPAC Solubility Data Series (Oxford University Press: Oxford, United Kingdom, 1995).Google Scholar
  4. 4.
    T. E. Burchfield and G. L. Bertrand,J. Solution Chem. 4, 205 (1975).Google Scholar
  5. 5.
    W. E. Acree, Jr. and G. L. Bertrand,J. Phys. Chem. 81, 1180 (1977).Google Scholar
  6. 6.
    W. E. Acree, Jr.,Thermodynamic Properties of Nonelectrolyte Solutions (Academic Press: Orlando, FL, 1984).Google Scholar
  7. 7.
    W. E. Acree, Jr. and J. H. Rytting,J. Pharm. Sci. 72, 292 (1983).Google Scholar
  8. 8.
    C. L. Judy, N. M. Pontikos, and W. E. Acree, Jr.,Phys. Chem. Liq. 16, 179 (1987).Google Scholar
  9. 9.
    W. E. Acree, Jr. and G. L. Bertrand,J. Solution Chem. 12, 101 (1983).Google Scholar
  10. 10.
    W. E. Acree, Jr. and J. H. Rytting,J. Pharm. Sci. 71, 201 (1982).Google Scholar
  11. 11.
    W. E. Acree, Jr. and A. D. Procyk,Thermochim. Acta 130, 367 (1988).Google Scholar
  12. 12.
    J. M. Prausnitz, R. N. Lichtenthaler, and E. Gomez de Azevedo,Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd edn, (Prentice Hall: Englewood Cliffs, NJ, 1986).Google Scholar
  13. 13.
    D. Tyrer,J. Chem. Soc., London 97, 2620 (1910).Google Scholar
  14. 14.
    K. N. Marsh and J. B. Ott,Int. DATA Ser., Selec. Data Mixtures, Ser. A, 100 (1984).Google Scholar
  15. 15.
    K. N. Marsh, J. B. Ott, and M. J. Costigan,J. Chem. Thermodyn. 12, 857 (1980).Google Scholar
  16. 16.
    M. V. Marthandan and W. E. Acree, Jr.,J. Chem. Eng. Data 32, 301 (1987).Google Scholar
  17. 17.
    J. R. Wallach, S. A. Tucker, B. M. Oswalt, D. J. Murral, and W. E. Acree, Jr.,J. Chem. Eng. Data 34, 70 (1989).Google Scholar
  18. 18.
    K. L. Hoy,J. Paint Technol. 42, 76 (1970).Google Scholar
  19. 19.
    V. Majer, V. Svoboda, S. Hala, and J. Pick,Collect. Czech. Chem. Commun. 44, 637 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Mary E. R. McHale
    • 1
  • Ann-Sofi M. Kauppila
    • 1
  • Joyce R. Powell
    • 1
  • Pablo OteroJr.
    • 1
  • Melani Jayasekera
    • 1
  • William E. AcreeJr.
    • 1
  1. 1.Department of ChemistryUniversity of North TexasDenton

Personalised recommendations