Skip to main content
Log in

Diffusion with hydrolysis and ion association in aqueous solutions of beryllium sulfate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Taylor dispersion is used to measure mutual diffusion coefficients for aqueous solutions of beryllium sulfate at concentrations from 0.005 to 1 mol-L−1 at 25°C. Least-squares analysis of the dispersion profiles shows that diffusion of the partially hydrolyzed salt produces a small additional flow of sulfuric acid, about 0.04 mol sulfuric acid per mole of total beryllium sulfate. Ternary diffusion coefficients measured for the aqueous BeSO4−H2SO4 system are qualitatively consistent with Nernst-Planck predictions based on the formation of beryllium sulfate ion pairs, bisulfate ions, and the hydrolysis equilibria 2Be2++H2O= Be2OH3++H+, 3Be2++2H2O=Be3(OH) 4+2 +2H+. Except for very dilute solutions, the predicted flow of sulfuric acid is small compared to the flow of beryllium sulfate because most of the beryllium ions are protected from hydrolysis by the formation of BeSO4 ion pairs, and most of the hydrogen ions produced by hydrolysis are converted to less-mobile bisulfate ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mattock,J. Amer. Chem. Soc. 76, 4835 (1954).

    Google Scholar 

  2. P. Silber,Beryllium inNouveau Traité de Chimie Minérale, Vol. IV, P. Pascal, ed., (Masson, Paris, 1958) p. 20.

    Google Scholar 

  3. R. A. Robinson,J. Chem. Soc. 4543 (1952).

  4. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Academic Press, New York, 1959).

    Google Scholar 

  5. J. A. Rard and D. G. Miller,J. Solution Chem. 8, 755 (1979).

    Google Scholar 

  6. V. M. Lobo, A. C. Ribeiro, and L. M. Verissimo,J. Chem. Eng. Data 39, 726 (1994).

    Google Scholar 

  7. International Critical Tables, Vol. V, (McGraw-Hill, New York, 1929) p. 14.

  8. T. Isono,Rikagaku Kenkynsho Hokoku 56, 103 (1980).

    Google Scholar 

  9. D. G. Leaist,J. Solution Chem. 14, 709 (1985).

    Google Scholar 

  10. Z. Deng and D. G. Leaist,Can. J. Chem. 69, 1548 (1991).

    Google Scholar 

  11. D. G. Leaist,J. Chem. Soc., Faraday Trans. 76, 597 (1991).

    Google Scholar 

  12. C. Erkey and A. Akgerman inMeasurement of the Transport Properties of Fluids; W. A. Wakeham, A. Nagashima, J. V. Sengers, eds., (Blackwell, London, 1991) p. 251.

    Google Scholar 

  13. D. G. Leaist and L. Hao,J. Phys. Chem. 97, 1464 (1993).

    Google Scholar 

  14. J. S. Newman,Electrochemical Systems, (Prentice Hall, Englewood Cliffs, 1973).

    Google Scholar 

  15. D. G. Leaist and L. Hao,J. Chem. Soc., Faraday Trans. 89, 2775 (1993).

    Google Scholar 

  16. M. Kerker,J. Amer. Chem. Soc. 79, 3664 (1957).

    Google Scholar 

  17. J. W. Larson, K. G. Zeeb, and L. G. Hepler,Can. J. Chem. 60, 2141 (1982).

    Google Scholar 

  18. E. Högfeldt,Stability Constants of Metal-Ion Complexes. Part A: Inorganic Ligands, (Pergamon, Oxford, 1982) p. 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Lu, R. & Leaist, D.G. Diffusion with hydrolysis and ion association in aqueous solutions of beryllium sulfate. J Solution Chem 25, 231–242 (1996). https://doi.org/10.1007/BF00972522

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972522

Key Words

Navigation