Neurochemical Research

, Volume 13, Issue 4, pp 389–394 | Cite as

A phosphoinositide-linked peptide response in astrocytes: Evidence for regional heterogeneity

  • A. J. Cholewinski
  • M. R. Hanley
  • G. P. Wilkin
Original Articles

Abstract

A phosphoinositide-linked peptide response in cultured rat astrocytes was studied by measuring the accumulation of [3H]inositol phosphates in the presence of lithium. Cultures derived from cortex, cerebellum and spinal cord each showed a unique pattern or degree of stimulation to a panel of neuropeptides. Cortical and cerebellar astrocytes were similar, responding to bradykinin, oxytocin, vasopressin, eledoisin and neurokinin β, whereas spinal cord astrocytes were stimulated by substance P, bradykinin, eledoisin, and neurokinins α and β. These observations are evidence in favour of regional specialisations of astrocytes which may respond uniquely to peptidesreleased by particular populations of neurons.

Key Words

Astrocytes neuropeptides phosphoinositide metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barber, R. P., Vaughn, J. E., Slemmon, J. R., Salvaterra, P. M., Roberts, E., and Leeman, S. E. 1979. The origin, distribution and synaptic relationships of substance P axons in the rat spinal cord. J. Comp. Neurol. 184:331–352.PubMedGoogle Scholar
  2. 2.
    Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206:587–595.PubMedGoogle Scholar
  3. 3.
    Bowman, C. L., and Kimelberg, H. K. 1984. Excitory acids directly depolarise rat brain astrocytes in primary culture. Nature 311:656–659.PubMedGoogle Scholar
  4. 4.
    Brinton, R. E., Gee, K. W., Wansley, J. K., Davis, T. P., and Yamamura, H. I. 1984. Regional distribution of putative vasopressin receptors in rat brain and pituitary by quantitative autoradiography. Proc. Natl. Acad. Sci. USA 81:7248–7252.PubMedGoogle Scholar
  5. 5.
    Chneiweiss, H., Glowinski, J., and Prémont, J. 1985a. Vasoactive intestinal polypeptide receptors linked to an adenylate cyclase and their relationship with biogenic amide- and somatostatin-sensitive adenylate cyclases on central neuronal and glial cells in primary cultures. J. Neurochem. 44:779–786.PubMedGoogle Scholar
  6. 6.
    Chneiweiss, H., Glowinski, J., and Prémont, J. 1985b. Modulation by monoamines of somatostatin-sensitive adenylate cyclase on neuronal and glial cells from the mouse brain in primary culture. J. Neurochem. 44:1825–1831.PubMedGoogle Scholar
  7. 7.
    Evans, T., McCarthy, K. D., and Harden, T. K. 1984. Regulation of cyclic AMP accumulation by peptide hormone receptors in immunocytochemically defined astroglial cells. J. Neurochem. 43:131–138.PubMedGoogle Scholar
  8. 8.
    Glick, S. M., and Brownstein, M. J. 1980. Vasopressin content of rat brain. Life Sci. 27:1103–1110.PubMedGoogle Scholar
  9. 9.
    Goldstein, R. H., and Polgar, J. 1982. The effect and interaction of bradykinin and prostaglandin on protein and collagen production by lung fibroblasts. J. Biol. Chem. 259:8630–8633.Google Scholar
  10. 10.
    Goldstein, R. H., and Wall, M. 1984. Activation of protein formation and cell division by bradykinin and Des-arg-bradykinin. J. Biol. Chem. 259:9263–9268.PubMedGoogle Scholar
  11. 11.
    Hanley, M. R. 1985. Neuropeptides as mitogens. Nature 315:14–15.PubMedGoogle Scholar
  12. 12.
    Hansson, E. 1986. Primary astroglial cultures A biochemical and functional evaluation. neurochem. Res. 11:759–767.PubMedGoogle Scholar
  13. 13.
    Henn, F. A. and Henn, S. W. 1980. The psychopharmacology of astroglial cells. Prog. in Neurobiol. 15:1–17.Google Scholar
  14. 14.
    Hertz, L., and Richardson, R. S. 1984. Is neuropharmacology merely the pharmacology of neurons—or are astrocytes important too? TIPS, 5:272–276.Google Scholar
  15. 15.
    Hong, S. C. L., and Levine, J. 1976. Stimulation of prostaglandin synthesis by bradykinin and thrombin and their mechanisms of action in MC5-5 fibroblasts. J. Biol. Chem. 251:5814–5816.PubMedGoogle Scholar
  16. 16.
    Jan, Y., and Jan, L. 1983. An LHRH-like peptidergic neurotransmitter capable of action at a distance in autonomic ganglia. TINS 6:320–324.Google Scholar
  17. 17.
    Kanazawa, I., Ogawa, T., Kimura, S., and Munekata, E. 1984. Regional distribution of substance P, neurokinin α and neurokinin β in rat central nervous system. Neurosci. Res. 2:111–120.PubMedGoogle Scholar
  18. 18.
    Kariya, K., Yamamuri, A., and Sasaki, T. 1985. Regional distribution and characterisation of kinin in the CNS of the rat. J. Neurochem. 44:1892–1897.PubMedGoogle Scholar
  19. 19.
    Keller, M., Jackirsch, R., Seregi, A., and Hertting, G. 1985. Comparison of prostanoid forming capacity on neuronal and astroglial cells in primary cultures. Neurochem. Int. 7:655–665.Google Scholar
  20. 20.
    Kenny, J. 1986. Cell surface peptidases are neither peptidenor organ-specific. TIBS, 11:40–42.Google Scholar
  21. 21.
    Kettenmann, H., Backus, K. H., and Schachner, M. 1984. Aspartate, glutamate and γ-aminobutyric acid depolarise cultured astrocytes, Neurosci. Lett. 52:25–29.PubMedGoogle Scholar
  22. 22.
    Kimelberg, H. K., and Katz, D. M. 1986. Regional differences in 5-hydroxytryptamine and catecholamine uptake in primary astrocyte cultures. J. Neurochem. 47:1647–1652.PubMedGoogle Scholar
  23. 23.
    Kuhar, M. J. 1985. The mis match problem in receptor matching studies. TINS, 8:190–191.Google Scholar
  24. 24.
    Löffler, F., Van Calker, D., and Hamprecht, B. 1982. Parathynin and calcitonin stimulate cyclic AMP accumulation in cultured murine brain cells. EMBO J. 1:297–303.PubMedGoogle Scholar
  25. 25.
    Murphy, S., Pearce, B., and Morrow, C. 1986. Astrocytes have both M1 and M2 muscarinic receptor subtypes. Brain Res. 364:177–180.PubMedGoogle Scholar
  26. 26.
    Nilaver, G., Zimmerman, E. A., Wilkins, J., Hoffman, D., and Silverman, A-J. 1980. Magnocellular hypothalamic projections to the lower brain stem and spinal cord of the rat. Neuroendocrinol. 30:150–158.Google Scholar
  27. 27.
    Nilsson, J., Von Euler, A. M., and Dalsgaard, C. J. 1985. Stimulation of connective tissue cell growth by substance P and substance K. Nature 315:61–63.PubMedGoogle Scholar
  28. 28.
    Pearce, B., Cambray-Deakin, M., Morrow, C., Grimble, J., and Murphy, S. 1985. Activation of muscarinic and of α1-adrenergic receptors on astrocytes results in the accumulation of inositol phosphates. J. Neurochem. 45:1534–1540.PubMedGoogle Scholar
  29. 29.
    Pearce, B., Morrow, C., and Murphy, S. 1986. Receptormediated inositol phospholipid hydrolysis in astrocytes. Eur. J. Pharmacol. 121:231–243.PubMedGoogle Scholar
  30. 30.
    Perry, D. C., and Snyder, S. H. 1984. Identification of bradykinin in mammalian brain. J. Neurochem. 43:1072–1080.PubMedGoogle Scholar
  31. 31.
    Pert, C. B., Raff, M. R., Lieber, R. J., and Herkenham, M. 1985. Neuropeptides and their receptors: A psychosomatic network. J. Immunol. 135:820s-826s.PubMedGoogle Scholar
  32. 32.
    Raff, M. C., Fields, K. L., Hakomori, S. I., Mirsky, R., Pruss, R. M., and Winter, J. 1979. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res 174:283–308.PubMedGoogle Scholar
  33. 33.
    Rosengurt, E., Legg, A., and Pettican, P. 1979. Vasopressin stimulation of mouse 3T3 cell growth. Proc. Natl. Acad. Sci. USA 76:1284–1287.PubMedGoogle Scholar
  34. 34.
    Torrens, Y., Beaujouan, J. C., Saffroy, M., Daguet de Montety, M. C., Bergström, L., and Glowinski, J. 1986. Substance P receptors in primary cultures of cortical astrocytes from the mouse. Proc. Natl. Acad. Sci. USA 83:9216–9220.PubMedGoogle Scholar
  35. 35.
    Van Calker, D., and Hamprecht, B. 1980. Effects of neurohormones on glial cells. Pages 31–67,in Federoff, S. and Hertz, L. (eds.) Advances in Cellular Neurobiology Vol. 1. Academic Press, New York.Google Scholar
  36. 36.
    Van Calker, D., Müller, M., and Hamprecht, B. 1980. Regulation by secretin, vasoactive intestinal peptide and somatostatin of cAMP accumulation in cultured brain cells. Proc. Natl. Acad. Sci. USA 77:6907–6911.PubMedGoogle Scholar
  37. 37.
    Van Calker, D., Löffler, F., and Hamprecht, B. 1983. Corticotropin peptides and melanotropins elevate the level of adenosine 3′:5′-cyclic monophosphate in cultured murine brain cells. J. Neurochem. 40:418–427.PubMedGoogle Scholar
  38. 38.
    Van Leeuwen, F. W., Pool, C. W., and Sluiter, A. A. 1983. Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe. Neurosci. 8:229–241.Google Scholar
  39. 39.
    Vicentini, L. M., and Villereal, M. L. 1984. Serum, bradykinin and vasopressin stimulate release of inositol phosphates from human fibroblasts. Biochem. Biophys. Res. Comm. 123:663–670.PubMedGoogle Scholar
  40. 40.
    Wilkin, G. P., Balázs, R., Wilson, J. E., Cohen, J., and Dutton, G. R. 1976. Preparation of cell bodies from the developing cerebellum. Structural and metabolic integrity of the isolated cells. Brain Res. 115:181–189.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. J. Cholewinski
    • 1
  • M. R. Hanley
    • 2
  • G. P. Wilkin
  1. 1.Department of BiochemistryImperial CollegeLondon
  2. 2.MRC Molecular Neurobiology UnitCambridge

Personalised recommendations