Lithuanian Mathematical Journal

, Volume 31, Issue 1, pp 62–70 | Cite as

Generalized Gaussian fields with local communication

  • A. Zhalis
  • A. A. Tempel'man


Local Communication Gaussian Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. M. Gel'fand and N. Ya. Vilenkin, Applications of Harmonic Analysis. Rigged Hilbert Spaces [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  2. 2.
    I. M. Gel'fand and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  3. 3.
    J. L. Doob, Stochastic Processe, Wiley, New York (1953).Google Scholar
  4. 4.
    A. I. Zhalis, “Gaussian Markov random sequences with local communication,” Liet. Mat. Rinkinys,26, No. 1, 38–51 (1986).Google Scholar
  5. 5.
    A. I. Zhalis, “Gaussian Markov chains with weak communication,” Dep. in LitNIINTI, July 15, 1986, No. 1676.Google Scholar
  6. 6.
    I. A. Ignatyuk and T. S. Turova, “Gaussian processes with local communication,” in: Communicating Markov Processes and Their Applications in Biology [in Russian], ONTI NTsBI Akad. Nauk SSSR, Pushnno (1986).Google Scholar
  7. 7.
    G. E. Shilov, Mathematical Analysis [in Russian], Moscow State Univ. (1984).Google Scholar
  8. 8.
    J. L. Doob, “The elementary Gaussian processes,” Ann. Math. Stat,15, 229–292 (1944).Google Scholar
  9. 9.
    T. M. Liggett, Interacting Particle Systems, Springer, Berlin (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. Zhalis
  • A. A. Tempel'man

There are no affiliations available

Personalised recommendations