Skip to main content
Log in

Detoxification enzymes following intrastriatal kainic acid

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A complete explanation of the neurotoxicity that follows kainic acid (KA) injection into the rat striatum is lacking. An assessment of the chronological course after intrastriatal KA injection of the activities of enzymes preferentially concentrated in glia or involved in the detoxification of oxygen metabolites is accomplished. An enhancement of the specific activities of glutathione peroxidase (GP) and catalase is found without an alteration in the specific activity of superoxide dismutase (SOD). There is no increase in the in vivo striatal levels of malondialdehyde, a putative indicator of lipid peroxidation, the expected result of cell membrane damage from oxygen metabolites. Understanding the mechanism and importance of the preferential induction of the activities of the detoxification enzymes will require further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vernadakis, A. 1975. Neuronal-glial interactions during development and aging. Fed. Pro. 34:89–95.

    Google Scholar 

  2. Brizzee, K. R., Sherwood, N., and Timiras, P. S. 1968. A comparison of cell populations at various depth levels in cerebral cortex of young adult and aged Long-Evans rats. J. Gerontol. 23:289–297.

    Google Scholar 

  3. Peng, M. T., and Lee, L. R. 1979. Regional differences of neuron loss of rat brain in old age. Gerontol. 25:205–211.

    Google Scholar 

  4. Brody, H. 1978. Cell counts in cerebral cortex and brain. Pages 345–351, in Katzman, R., Terry, R. D., and Bick, K. L. (eds.), Alzheimer's disease: Senile dementia and related disorders, Raven Press, New York.

    Google Scholar 

  5. Lange, H., Thorner, G., Hopf, A., and Schroder, F. 1975. Morphometric studies of the neuropathological changes in choreatic disease. J. Neurol. Sci. 28:401–425.

    Google Scholar 

  6. Coyle, J. T., McGeer, E. G., McGeer, P. L., and Schwarcz, R. 1978. Neostriatal injections: A model for Huntington's chorea. Pages 138–159, in McGeer, E. G., Olney, J. W., and McGeer, P. L. (eds.), Kainic acid as a tool in neurobiology, Raven Press, New York.

    Google Scholar 

  7. Biziere, K., and Coyle, J. T. 1979. Effects of cortical ablation on the neurotoxicity and receptor binding in kainic acid in striatum. J. Neurosci. Res. 4:383–398.

    Google Scholar 

  8. Retz, K. C., and Coyle, J. T. 1982. Effects of kainic acid on high-energy metabolites in the mouse striatum. J. Neurochem. 38:196–203.

    Google Scholar 

  9. Savolainen, H. 1978. Superoxide dismutase and glutathione peroxidase activities in rat brain. Res. Comm. Chem. Path. Pharmacol. 21:173–176.

    Google Scholar 

  10. Tappel, A. L. 1973. Lipid peroxidation damage to cell components. Fed. Proc. 32:1870–1874.

    Google Scholar 

  11. Glowinski, J. and Iversen, L. L. 1966. Regional studies of catecholamines in the rat brain. I. The disposition of 3H norepinephrine, 3H dopamine and 3H dopa in various regions of the brain. J. Neurochem. 13:655–669.

    Google Scholar 

  12. Ellman, G. L., Courtney, K. D., Andres, V., Jr., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetycholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Google Scholar 

  13. Crapo, J. D., McCord, J. M., and Fridovich, I. 1978. Superoxide dismutase: preparation and assay. Meth. Enzymo. 53:382–393.

    Google Scholar 

  14. Splittgerber, A. G., and Tappel, A. L. 1978. Steady state and pre-steady state kinetic properties of rat liver selenium-glutathione peroxidase. J. Biol. Chem. 254:9807–9813.

    Google Scholar 

  15. Cohen, G., Dembiec, D., and Marcus, J. 1970. Measurement of catalase activity in tissue extracts. Anal. Biochem. 34:30–38.

    Google Scholar 

  16. Rowe, W. B., Ronzio, R. A., and Wellner, V. P. 1970. Glutamine synthetase (sheep brain). Meth. Enzymol. 17:900–910.

    Google Scholar 

  17. Placer, Z. A., Cushman, L. L., and Johnson, B. C. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 16:359–364.

    Google Scholar 

  18. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  19. Clark, S. 1984. Determination of membrane protein concentration. Pages 149–161, in Venter, J. C. and Harrison, L. (eds.), Receptor purification procedures, Alan R. Liss, New York.

    Google Scholar 

  20. Nicklas, W. J., Nunez, R., Berl, S., and Duvoisin, R. 1979. Neuronal-glial contributions to transmitter amino acid metabolism: studies with kainic acid-induced lesions of rat striatum. J. Neurochem. 33:839–844.

    Google Scholar 

  21. Norenberg, M. D. 1983. Immunohistochemistry of glutamine synthetase. Pages 95–111, in Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. (eds.), Glutamine, glutamate and GABA in the central nervous system, Alan R. Liss, New York.

    Google Scholar 

  22. Harman, D. 1981. The aging process. Proc. Natl. Acad. Sci. 78:7124–7128.

    Google Scholar 

  23. Coyle, J. T., Molliver, M. E., and Kuhar, M. J. 1978. In situ injection of kainic acid: A new method for selectively lesioning neuronal cell bodies while sparing axons of passage. J. Comp. Neur. 180:301–324.

    Google Scholar 

  24. Cohen, G. 1978. The generation of hydroxyl radicals in biologic systems: toxicological aspects. Photochem. Photobio. 28:669–675.

    Google Scholar 

  25. Stevens, J. B., and Autor, A. P. 1980. Proposed mechanism for neonatal rat tolerance to normobaric hyperoxia. Fed. Proc. 39:3138–3143.

    Google Scholar 

  26. Pritchard, E. T., and Singh, H. 1961. Lipid peroxidation in developing rat brain. Can. J. Biochem. 39:1231–1238.

    Google Scholar 

  27. Chvapil, M., Kern, J. M., Misiorowski, R., and Weistein, P. R. 1982. Endogenous antioxidants and rate of malondialdehyde formation in central and peripheral nervous systems. Exp. Neurol. 78:765–774.

    Google Scholar 

  28. Kogure, K., Watson, B. D., Busto, R., and Abe, K. 1982. Potentiation of lipid peroxides by ischemia in rat brain. Neurochem. Res. 7:437–455.

    Google Scholar 

  29. Misiorowski, R. L., Chvapil, M., Snider, B. J., Weinstein, P. R., and Vostal, J. J. 1983. Inhibition of lipid peroxidation in spinal cord homogenates by various drugs. Exp. Neurol. 81:714–721.

    Google Scholar 

  30. Kovachich, G. B., and Mishra, O. P. 1980. Lipid peroxidation in rat brain cortical slices as measured by the thiobarbituric acid test. J. Neurochem. 35:1449–1452.

    Google Scholar 

  31. Boehme, D. H., Kosecki, R., Carson, S., Stern, F., and Marks, N. 1977. Lipoperoxidation in human and rat brain tissue: Developmental and regional studies. Brain Res. 136:11–21.

    Google Scholar 

  32. Renhcrona, S., Smith, D. S., Akesson, B., Westerberg, E., and Siesjo, B. K. 1980. Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+ and ascorbic acid-stimulated lipid peroxidation in vitro. J. Neurochem. 34:1630–1638.

    Google Scholar 

  33. Dirks, R. C., and Faiman, M. D. 1982. Free radical formation and lipid peroxidation in rat and mouse cerebral cortex slices exposed to high oxygen pressure. Brain Res. 248:355–360.

    Google Scholar 

  34. Chan, P. H., Yurko, M., and Fishman, R. A. 1982. Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J. Neurochem. 38:525–531.

    Google Scholar 

  35. Noda, Y., McGeer, P. L., and McGeer, E. G. 1983. Lipid peroxide distribution in brain and the effect of hyperbaric oxygen. J. Neurochem. 40:1329–1332.

    Google Scholar 

  36. Yoshida, S., Indh, S., Asano, T., Sano, K. Kubota, M., Shimazaki, H., and Ueta, N. 1980. Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. J. Neurosurg. 53:323–331.

    Google Scholar 

  37. Noda, Y., McGeer, P. L., and McGeer, E. G. 1982. Lipid peroxides in brain during aging and vitamin E deficiency: Possible relations to changes in neurotransmitter indices. Neurobiol. Aging 3:173–178.

    Google Scholar 

  38. Triggs, W. J., and Willmore, L. J. 1984. In vivo lipid peroxidation in rat brain following intracortical Fe2+ injection. J. Neurochem. 42:976–980.

    Google Scholar 

  39. Szabo, L., Lajko, K., Barabas, K., and Matkovics, B. 1983. Effects of neuroleptics on the lipid peroxidation and peroxide metabolism enzyme activities in various discrete areas of the rat brain. Gen. Pharmac. 14:537–539.

    Google Scholar 

  40. Roy, D., Pathak, D. N., and Singh, R. 1983. Effects of chlorpromazine on the activities of antioxidant enzymes and lipid peroxidation in the various regions of aging rat brain. J. Neurochem. 42:628–633.

    Google Scholar 

  41. Fletcher, B. L., Dillard, C. J., and Tappel, A. L. 1973. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem. 52:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, M.R., Ramchand, C.N., Sailer, V. et al. Detoxification enzymes following intrastriatal kainic acid. Neurochem Res 12, 425–429 (1987). https://doi.org/10.1007/BF00972293

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972293

Key Words

Navigation