Lithuanian Mathematical Journal

, Volume 28, Issue 1, pp 97–105 | Cite as

Ceneralization of the method of Krylov-Bogolyubov-Mitropol'skii

  • A. Staras


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1984).Google Scholar
  2. 2.
    Yu. A. Mitropol'skii and B. I. Moseenkov, Asymptotic Solution of Partial Differential Equations [in Russian], Vishcha Shkola, Kiev (1976).Google Scholar
  3. 3.
    Yu. A. Mitropol'skii and G. P. Khoma, Mathematical Foundation of Asymptotic Methods of Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  4. 4.
    A. L. Shtaras, “Averaging of weakly nonlinear equations,” in: 27th Conference of the Lithuanian Mathematical Society. Abstracts of Reports [in Russian], Vol. 2, Vilnius (1986), pp. 200–201.Google Scholar
  5. 5.
    S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).Google Scholar
  6. 6.
    E. I. Kazakevich, “Asymptotic integration of a Cauchy problem,” Liet. Mat. Rinkinys,24, No. 3, 133–138 (1984).Google Scholar
  7. 7.
    A. L. Shtaras, “Characteristic oscillations in a nonlinear sonic resonator,” Dokl. Akad. Nauk SSSR,266, No. 5, 1100–1104 (1982).Google Scholar
  8. 8.
    S. C. Chikwendu and J. A. Kevorkian, “A perturbation method for hyperbolic equations with small nonlinearities,” SIAM J. Appl. Math.,22, 235–258 (1972).Google Scholar
  9. 9.
    A. L. Shtaras, “Asymptotic integration of weakly nonlinear partial differential equations,” Dokl. Akad. Nauk SSSR,237, No. 3, 525–528 (1977).Google Scholar
  10. 10.
    A. L. Shtaras, “Asymptotic description of discontinuous solutions. I, II,” Liet. Mat. Rinkinys,25, No. 3, 189–197; No. 4, 182–189 (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • A. Staras

There are no affiliations available

Personalised recommendations