Lithuanian Mathematical Journal

, Volume 18, Issue 2, pp 191–201 | Cite as

A limit property of functions with a nonzero divided difference

  • E. Kirjackis
Article
  • 13 Downloads

Keywords

Divided Difference Limit Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. Kirjackis, “On functions whose n-th divided difference is nonzero,” Liet. Mat. Rinkinys.,1, No. 1–2, 109–115 (1961).Google Scholar
  2. 2.
    E. Kirjackis, “On functions with a nonzero divided difference,” Liet. Mat. Rinkinys,3, No. 1, 157–189 (1963).Google Scholar
  3. 3.
    E. Kirjackis, “Some properties of functions whose divided difference is nonzero,” Liet. Mat. Rinkinys,2, No. 1, 55–60 (1962).Google Scholar
  4. 4.
    E. Kirjackis, “On a family of schlicht functions,” Liet. Mat. Rinkinys,16, No. 2, 111–116 (1976).Google Scholar
  5. 5.
    V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable, MIT Press (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • E. Kirjackis

There are no affiliations available

Personalised recommendations