Siberian Mathematical Journal

, Volume 13, Issue 6, pp 858–885 | Cite as

Asymptotic behavior of the solutions of elliptic equations of the second order near a boundary. II

  • G. M. Verzhbinskii
  • V. G. Maz'ya


Asymptotic Behavior Elliptic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. M. Verzhbinskii and V. G. Maz'ya, “Asymptotic behavior of the solutions of second order elliptic equations near a boundary. I,” Sibirsk. Matem. Zh.,12, No. 6, 1217–1249 (1971).Google Scholar
  2. 2.
    G. M. Verzhbinskii and V. G. Maz'ya, “Asymptotic behavior of the solutions of Dirichlet's problem near a nonregular boundary,” Dokl. Akad. Nauk SSSR,176, No. 3, 498–501 (1967).Google Scholar
  3. 3.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge (1940).Google Scholar
  4. 4.
    S. Agmon, A. Douglis, and L. Nirenberg, “Estimates of Solutions of Elliptic Equations near a Boundary,” Commun. Pure Appl. Math.,12, 623–727 (1959).Google Scholar
  5. 5.
    O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type. Academic Press, New York (1968).Google Scholar
  6. 6.
    V. A. Kondrat'ev, “Boundary problems for elliptic equations in conical domains,” Dokl. Akad. Nauk SSSR,153, No. 1, 27–29 (1963).Google Scholar
  7. 7.
    W. Littman, G. Stampacchia, and H. Weinberger, “Regular points for elliptic equations with discontinuous coefficients,” Ann. Scuola Norm. Super. Pisa, Part 3,17, No. 1-2, 45–79 (1963).Google Scholar
  8. 8.
    C. Miranda, Partial Differential Equations of Elliptic Type Springer-Verlag New York Inc., New York (1969).Google Scholar
  9. 9.
    M. Brelot, Eléments de la Théorie Classique du Potential, Centre de Documentation Universitaire, Paris (1961).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • G. M. Verzhbinskii
  • V. G. Maz'ya

There are no affiliations available

Personalised recommendations