Skip to main content
Log in

Decreased calmodulin kinase activity after status epilepticus

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Status epilepticus was induced in paralyzed, ventilated rats using bicuculline and was maintained for 50 to 120 minutes. Cerebral cortex, hippocampus, and cerebellum were assayed for calmodulin kinase II activity in vitro using [γ-32P]ATP and polyacrylamide gel electrophoresis. Seizures resulted in a 3.2 fold decrease in calmodulin kinase activity in crude synaptic membranes of cortex and in a 8.2 fold decrease in hippocampal membranes. Cytosolic calmodulin kinase activity was slightly increased in rats in status epilepticus but statistical significance was not reached. Status epilepticus did not affect calcium/calmodulin-dependent kinase activity in cerebellar membranes or cytosol. These data suggest that intense firing associated with continuous seizure activity decreases calmodulin kinase activity in cortical and hippocampal synaptic membranes, which may result in altered neuronal excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeLorenzo, R. J., Freedman, S. D., Yoke, W. B., and Maurer, S. C. 1979. Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phsophorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles. Proc. Natl. Acad. Sci. USA 76:1838–42.

    PubMed  Google Scholar 

  2. Schulman, H., and Greengard, P. 1978. Stimulation of brain membrane protein phosphorylation by calcium and endogenous heat stable protein. Nature (Lond) 271:478–479.

    Google Scholar 

  3. Cheung, W. Y. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27.

    PubMed  Google Scholar 

  4. LLanas, R., McGuinness, T. L., Leonard, C. S., Sugumori, M., and Greengard, P. 1985. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase alters neurotransmitter release at the squid giant axon. Proc. Natl. Acad. Sci. USA 82:3035–3039.

    PubMed  Google Scholar 

  5. Yamauchi, T., and Fujisawa, H. 1983. Purification and characterization of calmodulin-dependent protein kinase (Kinase II) which is involved in the activation of tryptophan 5-momooxygenase. Eur. J. Biochem. 132:15–21.

    PubMed  Google Scholar 

  6. Yamamoto, H., Fukunaga, K., Tanaka, E., and Miyamoto, E. 1983. Ca2+- and calmodulin-dependent phosphorylation of microtubule associated protein 2 and tau factor and inhibition of microtubule assembly. Neurochem. 41:1119–1125.

    Google Scholar 

  7. Kennedy, M. B., Bennett, M. K., and Erondu, N. E. 1983. Biochemical and immunochemical evidence that the ‘major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA 80:7357–7361.

    PubMed  Google Scholar 

  8. Goldenring, J. R., McGuire, J. S., and DeLorenzo R. J. 1984. Identification of the major postsynaptic density protein as homologous with the major calmodulin binding subunit of calmodulin-dependent protein kinase. J. Neurochem. 42:1077–1084.

    PubMed  Google Scholar 

  9. Bennet, M. K., Erondu, N. E., and Kennedy, M. B. 1983. Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain. J. Biol. Chem. 258:1275–12744.

    Google Scholar 

  10. Goldenring, J. R., Gonzalez, B., McGuire, J. S., and De-Lorenzo, R. J. 1983. Purification and characterization of a calmodulin-dependent protein kinase from brain cytosol able to phosphorylate tubulin and microtuble associated proteins. J. Biol. Chem. 258:12632–12744.

    PubMed  Google Scholar 

  11. Bronstein, J. B., Farber, D. B., and Wasterlain, C. G. 1986. Autophosphorylation of calmodulin kinase: Functional aspects. FEBS Lett. 196:135–138.

    PubMed  Google Scholar 

  12. Miller, S. G., and Kennedy, M. B. 1986. Regulation of Type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation. A Ca2+-triggered molecular switch. Cell 44:861–870.

    PubMed  Google Scholar 

  13. Griffiths, T., Evans, M. C., Meldrum, B. S. 1982. Intracellular sites of early calcium accumulation in the rat hippocampus during status epilepticus. Neurosci. Lett. 30:329–334.

    PubMed  Google Scholar 

  14. Soderfeldt B., Blennow G., Kalimo, H., Olsson Y., and Siesjo B. K. 1983. Influences of systemic factors on experimental epileptic brain injury. Structural changes accompanying bicuculline-induced seizures in rats following manipulations of tissue oxygenation or alpha-tocopheral levels. Acta Neuropath. 60:81–91.

    PubMed  Google Scholar 

  15. Glowinski J. and Iversen 1966. Regional studies of catecholamines in the rat brain. I. The deposition of [3H]norepinephrine, [3H]dopamine, and [3H]dopa in various regions of the brain. J. Neurochem. 13:655–669.

    PubMed  Google Scholar 

  16. DeRobertis, E. 1967. Ultrastructural an cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science 156:907–14.

    PubMed  Google Scholar 

  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–686.

    PubMed  Google Scholar 

  18. Dixon, W. J., and Massey, F. J. 1981. in Introduction to Statistical Analysis, McGraw-Hill, New York, NY. pp 339–341.

    Google Scholar 

  19. Saitoh, T., and Schwartz, J. H. 1985. Phosphorylation-dependent subcellular translocation of Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. J. Cell Biol. 100:835–842.

    PubMed  Google Scholar 

  20. Murachi, T. 1983. Calpain and calpastatin. Trends in Biochemical Sciences, 8:167–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronstein, J., Farber, D. & Wasterlain, C. Decreased calmodulin kinase activity after status epilepticus. Neurochem Res 13, 83–86 (1988). https://doi.org/10.1007/BF00971859

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971859

Key Words

Navigation