Skip to main content
Log in

An in vitro model of anoxic-induced damage in mouse brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

An in vitro model of anoxic-induced brain damage was developed to help elucidate the biochemical basis of cell damage due to reduced oxygen availability. Mouse forebrain slices were preincubated under various conditions (treatment incubation). The effects of this treatment incubation on [14C]acetylcholine (ACh) and14CO2 production from [U-14C]glucose were subsequently assessed in an incubation under optimal conditions (test incubation). A variety of treatment incubation conditions decreased14CO2 and14C-ACh production in the test incubation in parallel (r=0.932). For example, treatment incubations with no oxygen and high K+ reduced test incubation ACh (−63.2%) and CO2 (−67.3%) production. An anoxic-induced increase in calcium-45 uptake and the amelioration of anoxic induced changes by the calcium antagonist verapamil or by the omission of calcium from the treatment incubation suggest that altered calcium homeostasis was important in the production of the anoxic-induced deficits. These results provide in vitro evidence that anoxic induced increases in calcium may be pathophysiologically important and that reducing calcium entry postsynaptically may alleviate anoxic-induced changes. This model may prove useful in elucidating the molecular basis of these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broderick, P. A. and Gibson, G. E. 1986. Extracellular dopamine and serotonin in vivo during repeated episodes of hypoxic-hypoxia. Soc. Neurosci. Abst. 12:565.

    Google Scholar 

  2. Cortes, R., Supavilai, P., Karobath, M., and Palacios, J. M. 1984. Calcium antagonist binding sites in the rat brain: Quantitative autoradiographic mapping using the 1,4-dihydropyridines [3H]PN200-100 and [3H]PY108-068. J. Neural. Transmission 60:169–197.

    Google Scholar 

  3. Derksen, A., and Cohen, P. 1975. Pattern of fatty acid release from endogenous substrates by human platelet homogenates and membranes. J. Biol. Chem. 250:9342–9347.

    PubMed  Google Scholar 

  4. Deshpande, J. K., Siesjo, B., and Wieloch, T. 1987. Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J. of Cerebral Blood Flow and Metabolism 7:89–95.

    Google Scholar 

  5. Deshpande, J. K., and Wieloch, T. 1985. Amelioration of ischemic brain damage by postischemic treatment with flunarizine. Neurological Research 7:27–29.

    PubMed  Google Scholar 

  6. Dienel, G. A., 1984. Regional accumulation of calcium in postischemic rat brain. J. Neurochem. 43:913–925.

    PubMed  Google Scholar 

  7. Dolivo, M. 1975. Metabolism of mammalian sympathetic ganglia. Fed. Proc. Am. Soc. Exp. Biol. 33:1043–1048.

    Google Scholar 

  8. Fonnum, F. 1975. A rapid radiochemical method for determination of choline acetyltransferase. J. Neurochem. 24:407–409.

    PubMed  Google Scholar 

  9. Freeman, G. B., Mykytyn, V., and Gibson, G. E. 1985. Selective alteration of dopamine and acetylcholine release during anoxia or 3,4-diaminopyridine treatment. Soc. Neurosci. Abst. 11:848.

    Google Scholar 

  10. Gibson, G. E., Jope, R., and Blass, J. P. 1975. Decreased synthesis of acetylcholine, accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J. 148:17–23.

    Google Scholar 

  11. Gibson, G. E., and Blass, J. P. 1976. A relation between [NAD+]/[NADH] potentials and glucose utilization in rat brain slices. J. Biol. Chem. 297:4127–4130.

    Google Scholar 

  12. Gibson, G. E., and Blass, J. P. 1983. Metabolism and neurotransmission. Pages 633–651 in A. Lajtha, (ed.) Handbook of Neurochemistry Vol 3. 2nd Ed. Plenum Press, New York.

    Google Scholar 

  13. Girgilf, M., and Magazanik, L. G. 1977. Action of calcium channel blocking agents (verapamil, D-600 and manganese ions) on transmitter release from moter nerve endings of frog muscle. Neurophysiology 9:415–421.

    PubMed  Google Scholar 

  14. Globus, M. Y-T., Ginsberg, M. D., Busto, R., Harik, S. I., and Dietrich, W. D. 1986. The relationship between striatal dopamine activity, glucose metabolism and blood flow following transient forebrain ischemia in the rat. Society for Neuroscience Abstracts 12:1249.

    Google Scholar 

  15. Gornall, A. G., Bardawill, C. J., and Davis, M. 1949. Determination of serum protein by means of the biuret reaction. J. Biol. Chem. 178:751–766.

    Google Scholar 

  16. Griffiths, T., Evans, M. C., and Meldrum, B. S. 1982. Intracellular sites of early calcium accumulation in the rat hippocampus during status epilepticus. Neuroscience Letters 30:329–334.

    PubMed  Google Scholar 

  17. Griffiths, T., Evans, M. C., and Meldurm, B. S. 1983. Intracellular calcium accumulation in rat hippocampus during seizures induced by bicuculline or L-allylglycine. Neuroscience 10:385–395.

    PubMed  Google Scholar 

  18. Hagberg, H., Lehman, A., Sandberg, M., Nystrom, B., Jacobson, I. and Hamberger, A. 1985. Ischemia-induced shift of inhibitory and excitatory amino acids from intra- to extracellular compartments. J. of Cerebral Flow and Metabolism 5:413–419.

    Google Scholar 

  19. Harris, R. J., Symon, L., Branston, N. M., and Bayhan, M. 1981. Changes in extracellular calcium activity in cerebral ischaemia. J. Cereb. Blood Flow Metab. 1:203–209.

    PubMed  Google Scholar 

  20. Harvey, S. A. K., Booth, R. F. G., and Clark, J. B. 1982. The effects in vitro of hypoglycaemia and recovery from anoxia on synaptosomal metabolism. Biochem. J. 206:433–439.

    PubMed  Google Scholar 

  21. Harvey, S. A. K., Booth, R. F. G., and Clark, J. B. 1983. The effect of [Ca2+] and [H+] on the functional recovery of rat brain synaptosomes from anoxic insult in vitro. Biochem. J. 212:289–295.

    PubMed  Google Scholar 

  22. Hass, W. K. 1981. Beyond cerebral blood flow metabolism and ischemic thresholds: Examination of the role of calcium in the initiation of cerebral infarction. Pages 3–17,in Meyer, J. S., Lechner, H., Reivich, M., Ott, E. O., and Arabinar, A., (eds.), Cerebral Vascular Disease, Vol. 3, Proceedings of the 10th Salzburg Conference on Cerebral Vascular Disease Excerpta Medica, Amsterdam.

  23. Hauesler, G. 1972. Differential effect of verapamil on excitation-contraction coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. J. Pharm. Exp. Ther. 180:672–682.

    Google Scholar 

  24. Henry, P. D. 1980. Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem. Amer. J. Cardiol. 46:1047–1058.

    PubMed  Google Scholar 

  25. Hess, M. L., and Manson, N. H. 1984. Molecular oxygen: Friend and Foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemic/reperfusion injury. J. Mol Cell. Cardiol. 16:969–985.

    PubMed  Google Scholar 

  26. Hirsh, J. A., and Gibson, G. E. 1984. Selective alteration of neurotransmitter release by low oxygen in vitro. Neurochem. Res. 9:1037–1047.

    Google Scholar 

  27. Jundt, H., Parzig, H., Reuter, H., and Stucki, J. W. 1975. The effect of substances releasing intracellular calcium ions on sodium-dependent calcium efflux from guinea-pig auricles. J. Physiol (London) 246:229–241.

    Google Scholar 

  28. Kass, I. S., and Lipton, P. 1982. Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J. Physiol. 332:459–472.

    PubMed  Google Scholar 

  29. Kaufmann, R., Bayer, R., Hennekes, R., and Kalusche, D. 1974. Antidysrhymic and calcium antagonist actions of verapamil and D-600: stereoselectivity of optical isomers. Naunyn-Schmied. Arch. Pharmacol. 285:R39 (Abst).

    Google Scholar 

  30. Kaufmann, A. J., and Serur, J. R. 1975. Optical isomers of verapamil on canine heart. Prevention of ventricular fibrillation induced by coronary artery occlusion: impaired atrial ventricular conductance and negative inotropic and chronotropic effects. Naunyn-Schmied. Arch. Pharmacol. 291:347–358.

    Google Scholar 

  31. Ksiezak, H. J., and Gibson, G. E. 1981. Oxygen dependence of glucose and acetylcholine metabolism in slices and synaptosomes from rat brain. J. Neurochem. 37:305–314.

    PubMed  Google Scholar 

  32. Lazarewicz, J. W., Zalewska, T., Haljamae, H., and Hamberger, A. 1978. Effect of calcium on brain metabolism in vitro. Neurochem. Res. 3:683–689.

    PubMed  Google Scholar 

  33. Leonard, J. P., and Salpeter, M. M. 1982. Calcium-mediated myopathy at neuromuscular junctions of normal and dystrophic muscle. Exp. Neurol. 76:121–138.

    PubMed  Google Scholar 

  34. Lipton, P., and Whittingham, T. S. 1982. Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J. Physiol. 325:51–65.

    PubMed  Google Scholar 

  35. Lund-Andersen, H. 1979. Transport of glucose from blood to brain. Physiological Reviews 59:305–352.

    PubMed  Google Scholar 

  36. Milde, L. N. and Milde, J. H. and Michenfelder, J. D. 1986. Delayed treatment with nimodipine improves cerebral blood flow after complete cerebral ischemia in the dog. J. Cerebral Blood Flow Metabolism 6:332–337.

    Google Scholar 

  37. Mittnacht, S., Jr., Shermann, S. C., and Farber, J. L. 1979. Reversal of ischemic mitochondrial dysfunction. J. Biol. Chem. 254:9871–9878.

    PubMed  Google Scholar 

  38. Mykytyn, V., and Gibson, G. E. 1985. In vitro anoxia selectively damages striatal and hippocampal acetylcholine and carbon dioxide production. Soc. Neurosci. Abst. 11:261.

    Google Scholar 

  39. Newberg, L. A., Steen, P. A., Milde, J. H. and Michenfelder, J. D. 1984. Failure of flunarizine to improve cerebral blood flow or neurologic recovery in a canine model of complete cerebral occlusion. Stroke 15:666–671.

    PubMed  Google Scholar 

  40. Nachshen, D. A., and Blaustein, M. P. 1979. The effects of some organic calcium antagonists on calcium influx in presynaptic nerve terminals. Mol. Pharmacol. 16:579–586.

    Google Scholar 

  41. Nayler, W. G. 1982. Calcium antagonists: Classification and properties. Pages 1–16in Rahwan, R. G. and Witiak, D. T., (eds.), Calcium Regulation by Calcium Antagonists, American Chemical Society, Washington, D.C.

    Google Scholar 

  42. Pant, H. C., and Gainer, H. 1980. Properties of calcium-activated protease in squid axoplasm which selectively degrades neurofilament proteins. J. Neurobiol. 11:1–12.

    PubMed  Google Scholar 

  43. Peterson, C., and Gibson, G. E. 1982. 3,4-Diaminopyridine alters acetylcholine metabolism and behavior during hypoxia. J. Pharm. Exp. Ther. 222:576–582.

    Google Scholar 

  44. Peterson, C., and Gibson, G. E. 1984. Synaptosomal calcium metabolism during hypoxia and 3,4-diaminopyridine treatment. J. Neurochem. 42:248–253.

    PubMed  Google Scholar 

  45. Peterson, C., and Gibson, G. E. 1985. Subsynaptosomal calcium distribution during hypoxia and 3,4-diaminopyridine treatment. J. Neurochem. 45:1779–1790.

    PubMed  Google Scholar 

  46. Pfeiffer, D. R., Schmid, P. C., Beatrice, M. C., and Schmid, H. H. O. 1979. Intramitochondrial phospholipase activity and the effects of Ca2+ plus n-ethylmaleimide on mitochondrial function. J. Biol. Chem. 254:11485–11494.

    PubMed  Google Scholar 

  47. Rothman, S. M., and Olney, J. W. 1986. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurology 19:105–111.

    Google Scholar 

  48. Scarpa, A., and Lindsay, J. G. 1972. Maintenance of energy-linked functions in rat-liver mitochondria aged in the presence of nupercaine. Biochem. 27:401–407.

    Google Scholar 

  49. Siemkowicz, E., and Hansen, A. J. 1981. Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats. Stroke 12:236–240.

    PubMed  Google Scholar 

  50. Simon, R. P., Griffiths, T., Evans, M. C., Swan, J. H., and Meldrum, B. S. 1984. Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: An electron microscopy study in the rat. J. Cereb. Blood Flow Metab. 4:350–361.

    PubMed  Google Scholar 

  51. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984. Blockade of N-methyl-d-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852.

    PubMed  Google Scholar 

  52. Sims, N. R., and Pulsinelli, W. A. 1986. Regionally selective alterations of mitochondrial function following transient forebrain ischemia in rats. Society for Neuroscience Abstracts 12:65.

    Google Scholar 

  53. Stahl, W. L., and Swanson, P. D. 1971. Movements of calcium and other cations in isolated cerebral tissues.J. Neurochem. 18:415–427.

    PubMed  Google Scholar 

  54. Triggle, D. J. 1982. Chemical pharmacology of calcium antagonists. Pages 17–37 in: Rahwan, R. G., and Witiak, D. T., (ed.). Calcium Regulation by Calcium Antagonists American Chemical Society, Washington, D.C.

    Google Scholar 

  55. Van Der Kloot, W., and Kita, H. 1975. The effects of the “calcium antagonist” verapamil on muscle action potentials in the frog and crayfish and on neuromuscular transmission in the crayfish. Comp. Biochem. Physiol. 50:121–125.

    Google Scholar 

  56. Van Reempts, J., Haseldonckx, M., Van de Ven, M., and Borgers, M. 1984. Morphology and ultrastractural calcium distribution in the rat hippocampus after severe transient ischemia. Pages 113–118in Bes, A., Braquet, P., Paoletti, R., and Siesjo, B. (eds.) Cerebral Ischemia, Elsevier Press, New York.

    Google Scholar 

  57. Vibulsresth, S., Dietrich, W. D., Busto, R., and Ginsberg, M. D. 1987. Failure of nimodipine to prevent ischemic neuronal damage in rats. Stoke 18:210–216.

    Google Scholar 

  58. Wrogemann, K., and Pena, S. D. J. 1976. Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle disease. Lancet 1:672–674.

    PubMed  Google Scholar 

  59. Zimmerman, A. N. E., and Hulsmann, W. C. 1966. Paradoxical influence of calcium ions on the permeability of the cell membranes of the isolated rat heart. Nature, 211:646–647.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, G.E., Mykytyn, V. An in vitro model of anoxic-induced damage in mouse brain. Neurochem Res 13, 9–20 (1988). https://doi.org/10.1007/BF00971849

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971849

Key Words

Navigation