Siberian Mathematical Journal

, Volume 23, Issue 2, pp 255–260 | Cite as

An iterative method for refining the necessary conditions for the univalence of polynomials

  • V. G. Cherednichenko


Iterative Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    D. Horowitz, “A further refinement for coefficient estimates of univalent functions,” Proc. Am. Math. Soc.,71, No. 2, 217–221 (1978).Google Scholar
  2. 2.
    D. Horowitz, “Coefficient estimates for univalent polynomials,” J. Anal. Math.,31, 112–124 (1977).Google Scholar
  3. 3.
    M. A. Evgrafov, Collection of Problems in the Theory of Analytic Functions [in Russian], Nauka, Moscow (1969).Google Scholar
  4. 4.
    J. Dieudonné, “Sur le rayon d'univalence des polynomes,” C. R. Acad. Sci. Paris,192, 78–81 (1931).Google Scholar
  5. 5.
    D. A. Brannan, “Coefficient regions for univalent polynomials of small degree,” Mathematika,14, Pt. 2, No. 28, 165–169 (1967).Google Scholar
  6. 6.
    N. A. Lebedev, The Area Principle in the Theory of Univalent Functions [in Russian], Nauka, Moscow (1975).Google Scholar
  7. 7.
    G. Ehrig, “Coefficient estimates concerning the Bieberbach conjecture,” Math. Z.,140, No. 2, 111–126 (1974).Google Scholar
  8. 8.
    Yang-Chung-Chun, “On the coefficients of a bounded univalent analytic function,” Proc. Indian Acad. Sci. A,82, No. 2, 37–40 (1975).Google Scholar
  9. 9.
    L. P. Il'ina and Z. D. Kolomoitseva, “The estimation of |c4| as a function of |c2| in the class S,” Vestn. Leningr. Univ., Ser. Mat. Mekh. Astron., No. 1, 27–30 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. G. Cherednichenko

There are no affiliations available

Personalised recommendations