Siberian Mathematical Journal

, Volume 17, Issue 4, pp 653–674 | Cite as

Stability estimates in Liouville's theorem and the Lp-integrability of the derivatives of quasi-conformal mappings

  • Yu. G. Reshetnyak
Article

Keywords

Stability Estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. A. Lavrent'ev, “On stability in Liouville's theorem,” Dokl. Akad. Nauk SSSR,95, No. 5, 925–926 (1954).Google Scholar
  2. 2.
    M. A. Lavrent'ev, “Quasi-conformal mappings,” Proceedings of the Third All-Union Mathematical Congree, Vol. 3, Survey Reports [in Russian], Izd-vo Akad. Nauk SSSR, Moscow (1958), pp. 198–208.Google Scholar
  3. 3.
    Yu. G. Reshetnyak, “Stability in Liouville's theorem on conformal mappings,” in: Some Problems of Mathematics and Mechanics (On the 60th birthday of the Academician M. A. Lavrent'ev) [in Russian], Izd. SO AN SSSR, Novosibirsk (1961), pp. 219–223.Google Scholar
  4. 4.
    P. P. Belinskii, “Stability in Liouville's theorem on conformal mappings in space,” in: Some Problems of Mathematics and Mechanics (On the 70th birthday of the Academician M. A. Lavrent'ev) [in Russian], Nauka, Leningrad (1971), pp. 88–101.Google Scholar
  5. 5.
    Yu. G. Reshetnyak, “A stability estimate in Liouville's theorem on conformal mappings of multidimensional spaces,” Sibirsk. Matem. Zh.,11, No. 5, 1121–1139 (1970).Google Scholar
  6. 6.
    P. P. Belinskii, “The order of closeness of a spatial conformal mapping to a conformal mapping,” Sibirsk. Matem. Zh.,14, No. 3, 475–483 (1973).Google Scholar
  7. 7.
    S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics [in Russian], Izd. Leningr. Un-ta, Leningrad (1950).Google Scholar
  8. 8.
    F. W. Gehring, “The Lp-integrability of the partial derivatives of a quasi-conformal mapping,” Acta Math.,130, 265–277 (1973).Google Scholar
  9. 9.
    Yu. G. Reshetnyak, “Estimates for some differential operators with a finite-dimensional kernel,” Sibirsk. Matem. Zh.,11, No. 2, 414–428 (1970).Google Scholar
  10. 10.
    L. G. Gurov and Yu. G. Reshetnyak, “An analog of the concept of a function with bounded mean oscillation,” Sibirsk. Matem. Zh.,17, No. 3, 540–546 (1976).Google Scholar
  11. 11.
    F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Communs. Pure and Appl. Math.,14, No. 3, 415–426 (1961).Google Scholar
  12. 12.
    Yu. G. Reshetnyak, “Stability in Liouville's theorem on conformal mappings for domains with a nonsmooth boundary,” Sibirsk. Matem. Zh.,17, No. 2, 361–369 (1976).Google Scholar
  13. 13.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York (1962).Google Scholar
  14. 14.
    Yu. G. Reshetnyak, “Mappings with bounded distortion as extremals of integrals of Dirichlet type,” Sibirsk. Matem. Zh.,9, No. 3, 652–666 (1968).Google Scholar
  15. 15.
    Yu. G. Reshetnyak, “Stability theorems for mappings with bounded distortion,” Sibirsk. Matem. Zh.,9, No. 3, 667–685 (1968).Google Scholar
  16. 16.
    Yu. G. Reshetnyak, “General theorems on semicontinuity and convergence for a functional,” Sibirsk. Matem. Zh.,8, No. 5, 1051–1069 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Yu. G. Reshetnyak

There are no affiliations available

Personalised recommendations