Siberian Mathematical Journal

, Volume 13, Issue 2, pp 214–230 | Cite as

Uniqueness of solution of an interpolation problem. I.

  • Yu. A. Kaz'min
Article
  • 11 Downloads

Keywords

Interpolation Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. H. Abel, “Sur les fonctions génératrices et leur déterminantes,” Oeuvres, Vol. 2, Christiania (1881).Google Scholar
  2. 2.
    A. O. Gel'fond, Calculus of Finite Differences [in Russian], Gostekhizdat, Moscow (1951).Google Scholar
  3. 3.
    Yu. A. Kaz'min, “The moments problem in the complex domain,” Vestn. MGU, Seriya Matem., Mekh.,1, 3–11 (1967).Google Scholar
  4. 4.
    V. L. Goncharov, “Interpolation processes and integral functions,” Usp. Matem. Nauk,3, 113–143 (1937).Google Scholar
  5. 5.
    V. L. Goncharov, Interpolation Theory and Function Approximation [in Russian], Gostekhizdat, Moscow (1954).Google Scholar
  6. 6.
    R. P. Boas and R. C. Buck, Polynomial Expansions of Analytical Functions, Springer Verlag, Berlin-Götingen-Heidelberg (1958).Google Scholar
  7. 7.
    O. Perron, “Über Bruwiersche Reihen,” Math. Z.,45, 127–141 (1939).Google Scholar
  8. 8.
    M. Falgas, “Sur l'effectivité des séries de base de polynomes,” Comptes Rendes Acad. Sci.,254, No. 2, 3473–3475 (1962).Google Scholar
  9. 9.
    Yu. A. Kaz'min, “On Abel's interpolation problem, I,” Mathematica (RSR, Cluj),13, No. 1, 87–112 (1971).Google Scholar
  10. 10.
    Yu. A. Kaz'min, “Completeness in curvilinear strips of sequences of exponential functions,” Vestn. MGU, Seriya Matem., Mekh., No. 6, 18–30 (1969), No. 3 (1971).Google Scholar
  11. 11.
    Yu. A. Kaz'min, “On one class of interpolation problems,” Dokl. Akad. Nauk SSSR,173, No. 4, 762–765 (1967).Google Scholar
  12. 12.
    Yu. A. Kaz'min, “On one general interpolation problem,” Dokl. Akad. Nauk SSSR,194, No. 6 (1970).Google Scholar
  13. 13.
    F. D. Gakhov, Boundary Problems [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  14. 14.
    L. Fantarrier, “Gli operatori funzionali e il calcolo della matrici infinite nella teoria dei quanti,” Rendiconti della Reale Academia Nazionale dei Lincei,3, No. 12, 645–650 (1928).Google Scholar
  15. 15.
    S. Banach, Course in Functional Analysis [Ukrainian translation], Radyan'ska Shkola, Kiev (1948).Google Scholar
  16. 16.
    R. F. DeMar, “Uniqueness classes for periodic-type functionals,” Duke Math. J., 37, No. 1, 29–40 (1970).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • Yu. A. Kaz'min

There are no affiliations available

Personalised recommendations