Neurochemical Research

, Volume 19, Issue 3, pp 359–365 | Cite as

The membrane form of acetylcholinesterase from rat brain contains a 20 kDa hydrophobic anchor

  • Nicola Boschetti
  • Jian Liao
  • Urs Brodbeck
Original Articles

Abstract

Rat brain acetylcholinesterase (AChE, EC 3.1.1.7) consists of about 80% amphiphilic detergent-soluble (DS-) AChE and 20% hydrophilic salt-soluble (SS-) AChE. DS-AChE contains about 65% tetrameric, 20% dimeric and 10% monomeric, SS-AChE about 40% tetrameric and 60% monomeric forms. N-terminal sequencing of DS- and SS-AChE gave identical N-termini corresponding to the published cDNA sequence of the mature enzyme. The band pattern on SDS-gels is similar to that of AChE from human and bovine brain. SDS-PAGE of hydrophobically labeled DS-AChE revealed the presence of a disulfide bonded hydrophobic membrane anchor of about 20 kDa. Monoclonal antibodies (mAbs) recognizing the anchor-containing subunits of mammalian brain DS-AChE, crossreacted with rat brain DS-AChE but not with SS-AChE. DS- and SS-AChE also reacted with antibodies raised against a peptide comprising the last 10 amino acids of the sequence of bovine brain AChE. Our results led us to conclude that both DS- and SS-AChE from rat brain contain T-type catalytic subunits, and DS-AChE in addition a P-type hydrophobic anchor similar to other mammalian brain DS-AChE.

Key Words

Acetylcholinesterase monoclonal antibody rat brain hydrophobic anchor 3-trifluoromethyl-3-(m-[125I]iodophenyl) diazirine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Massoulié, J., Pezzementi, L., Bon, S., Krejci, E., and Vallette, F. M. 1993. Molecular and cellular biology of cholinesterases. Progress in Neurobiology 41:31–91.PubMedGoogle Scholar
  2. 2.
    Gennari, K., Brunner, J., and Brodbeck, U. 1987. Tetrametric detergent-soluble acetylcholinesterase from human caudate nucleus: subunit composition and number of active sites. J. Neurochem. 49:12–18.PubMedGoogle Scholar
  3. 3.
    Inestrosa, N. C., Roberts, W. L., Marshall, T. L., and Rosenberry, T. L. 1987. Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262:4441–4444.Google Scholar
  4. 4.
    Roberts, W. L., Doctor, B. P., Foster, J. D., and Rosenberry, T. L. 1991. Bovine brain acetylcholinesterase primary sequence involved in intersubunit disulfade linkages. J. Biol. Chem. 266:7481–7487.PubMedGoogle Scholar
  5. 5.
    Heider, J., and Brodbeck, U. 1992. Monomerization of tetrameric bovine caudate nucleus acetylcholinesterase. Biochem. J. 281:279–284.PubMedGoogle Scholar
  6. 6.
    Liao, J., Mortensen, V., Nørgaard-Petersen, B., Koch, C., and Brodbeck, U. 1993. Monoclonal antibodies against brain acetylcholinesterases which recognize the subunits bearing the hydrophobic anchor. Eur. J. Biochem. 215:333–340.PubMedGoogle Scholar
  7. 7.
    Liao, J., Nørgaard-Petersen, B., and Brodbeck, U. 1993. Subunit association and glycosylation of acetylcholinesterase from monkey brain. J. Neurochem. 61:1127–1134.PubMedGoogle Scholar
  8. 8.
    Andres, C., El-Mourabit, M., Mark, J., and Waksman, A. 1992. A unique hydrophobic domain of rat brain globular acetylcholin-esterase for binding to the cell membranes. Neurochem. Res. 17:1247–1253.PubMedGoogle Scholar
  9. 9.
    Legay, C., Bon, S., Vernier, P., Coussen, F., and Massoulié, J. 1993. Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with aTorpedo collagenic subunit. J. Neurochem. 60:337–346.PubMedGoogle Scholar
  10. 10.
    Doctor, B. P., Chapman, T. C., Christner, C. E., Deal, C. D., De La Hoz, D. M., Gentry, M. K., Orgert, R. A., Rush, R. S., Smyth, K. K., and Wolf, A. D. 1990. Complete amino acid sequence of fetal bovine serum acetylcholinesterase and its comparison in various regions with other cholinesterases. FEBS Lett. 266:123–127.PubMedGoogle Scholar
  11. 11.
    Brodbeck, U., and Liao, J. 1992. Multidisciplinary approaches to cholinesterase functions. Subunit assembly and glycosylation of mammalian brain acetylcholinesterase. Pages 33–38,in Shafferman, A., and Velan, B. (eds), Plenum Press, New York.Google Scholar
  12. 12.
    Liao, J., Heider, H., Sun, M.-C., Stieger, S., and Brodbeck, U. 1991. The monoclonal antibody of 2G8 is carbohydrate-specific and distinguishes between different forms of vertebrate cholinesterases. Eur. J. Biochem. 198:59–65.PubMedGoogle Scholar
  13. 13.
    Liao, J., Heider, H., Sun, M.-C., and Brodbeck, U. 1992. Different glycosylation in acetylcholinesterases from mammalian brain and erythrocytes. J. Neurochem. 58:1230–1238.PubMedGoogle Scholar
  14. 14.
    Gennari, K., and Brodbeck, U. 1985. Molecular forms of acetylcholinesterase from human caudate nucleus: comparison of saltsoluble and detergent-soluble tetrameric enzyme species. J. Neurochem. 44:697–704.PubMedGoogle Scholar
  15. 15.
    Brodbeck, U., Gentinetta, R., and Ott, P. 1983. Membrane Proteins. A laboratory manual. Purification by affinity chromatography of red cell membrane acetylcholinesterase. Pages 85–96,in Azzi, A., Brodbeck, U., and Zahler, P. (eds), Springer-Verlag, Berlin.Google Scholar
  16. 16.
    Ellman, G. L., Courtney, D. K., Andres, V., and Featherstone, R. M. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.PubMedGoogle Scholar
  17. 17.
    Sørensen, K., and Brodbeck, U. 1986. A sensitive protein assay method using micro-titer plates. Experientia 42:161–162.Google Scholar
  18. 18.
    Stieger, S., Gentinetta, R., and Brodbeck, U. 1989. Cholinesterases from flounder muscle: purification and characterization of glycosyl-phosphatidylinositol-anchored and collagen-tailed forms differing in substrate specificity. Eur. J. Biochem. 181:633–642.PubMedGoogle Scholar
  19. 19.
    Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680–685.PubMedGoogle Scholar
  20. 20.
    Schoenle, E. J., Adams, L. D., and Sammons, D. W. 1984. Insulin-induced rapid decrease of a major protein in fat cell plasma membranes. J. Biol. Chem. 259:12112–12116.PubMedGoogle Scholar
  21. 21.
    Schaller, J., Akiyama, K., Kimura, H., Hess, D., Affolter, M., and Rickli, E. E. 1991. Primary structure of a new actin-binding protein from human seminal plasma. Eur. J. Biochem. 196:743–750.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Nicola Boschetti
    • 1
  • Jian Liao
    • 1
  • Urs Brodbeck
    • 1
  1. 1.Institute of Biochemistry and Molecular BiologyUniversity of BernBernSwitzerland

Personalised recommendations