Skip to main content
Log in

Studies on lipid peroxidation in the rat brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of this study was to set up a simple procedure for assessing lipid peroxidation (L.P.) and testing the activity of antioxidant compounds. L. P. was determined in rat brain homogenates by measuring the endogenous and stimulated accumulation of malonaldehyde (MDA). MDA was assayed by an HPLC method. Homogenates spontaneously formed appreciable amounts of MDA. The addition of increasing concentrations of FeCl2 resulted in a linear accumulation of MDA, up to 16.6-fold at 50 μM. An organic form of iron (Fe-saccharate) was less active on MDA formation (11.4-fold increase at 100 μM). The addition of xanthine-xanthine oxidase resulted in only a 2.4-fold increase in MDA formation. Various antioxidant or chelating compounds effectively inhibited L.P., with IC50 between 0.1 μM (phenoxazine) and 4–50 μM (α-tocopherol). Their potencies depended on the iron concentration and time of preincubation with the homogenates. In conclusion, this is a simple and reliable procedure for studying L.P. and inhibiting agents, provided that the experimental conditions are carefully assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi, G. 1988. Peroxidation, energy transduction and mitochondria during aging, pages 51–117. John Libbey Eurotext, London.

    Google Scholar 

  2. Braughler, J. M. 1989. Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Rad. Biol. Med. 6:289–301.

    PubMed  Google Scholar 

  3. Traystman, R. J., Kirsch, J. R., and Koehler, R. C. 1991. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 71:1185–1195.

    PubMed  Google Scholar 

  4. Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. D. 1989. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J. Neurochem. 52:381–389.

    PubMed  Google Scholar 

  5. Subbarao, K. V., Richardson, J. S., and Ang, L. C. 1990. Autopsy samples of Alzheimer's cortex show increased peroxidation in vitro. J. Neurochem. 55:342–345.

    PubMed  Google Scholar 

  6. Schroeder, F. 1984. Role of membrane lipid asymmetry in aging. Neurobiol. Aging 5:323–333.

    PubMed  Google Scholar 

  7. Halliwell, B., and Gutteridge, J. M. C. 1985. Oxygen radicals and the nervous system. Trends Neurosci. 8:22–26.

    Google Scholar 

  8. Bondy, S. C., McKee, M., and Martin, J. 1990. The effect of oxidative stress on levels of cytosolic calcium within and uptake of calcium by synaptosomes. Neurochem. Int. 17:615–623.

    Google Scholar 

  9. Benzi, G., Curti, D., Pastoris, O., Marzatico, F., Villa, R. F. and Dagani, F. 1991. Sequential damage in mitochondrial complexes by peroxidative stress. Neurochem. Res. 16:1295–1302.

    PubMed  Google Scholar 

  10. Viani, P., Cervato, G., Fiorilli, A., and Cestaro, B. 1991 Agerelated differences in synaptosomal peroxidative damage and membrane properties. J. Neurochem. 56:253–258.

    PubMed  Google Scholar 

  11. Joseph, J. A., and Roth, G. S. 1992. Cholinergic mechanism in aging: the role of oxidative stress. Clin. Neuropharmacol. 15, suppl. 1, PtA:508A.

    PubMed  Google Scholar 

  12. Halliwell, B., and Gutteridge, J. M. C. 1986. Iron and free radical reactions: two aspects of antioxidant protection. Trends Biochem. Sci. 11:372–375.

    Google Scholar 

  13. Koster, J. F., and Slee, R. G. 1986. Ferritin, a physiological iron donor for microsomal lipid peroxidation. FEBS Lett. 199:85–88.

    PubMed  Google Scholar 

  14. Puppo, A., and Halliwell, B. 1988. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Biochem. J. 249:185–190.

    PubMed  Google Scholar 

  15. Thomas, C. E., Morehouse, L. A., and Aust, S. D. 1985. Ferritin and superoxide-dependent lipid peroxidation. J. Biol. Chem. 260:3275–3280.

    PubMed  Google Scholar 

  16. Bishayee, S., and Balasubramanian, A. S. 1971. Lipid peroxide formation in rat brain. J. Neurochem. 18:909–920.

    PubMed  Google Scholar 

  17. Kontos, H. A. 1989. Oxygen radicals in CNS damage. Chem-Biol. Inter. 72:229–255.

    Google Scholar 

  18. Barkai, A. I., Durkin, M., Dwork, A. J., and Nelson, H. D. 1991. Autoradiographic study of iron-binding sites in the rat brain: distribution and relationship to aging. J. Neurosci. Res. 29:390–395.

    PubMed  Google Scholar 

  19. Connor, J. R., Snyder, B. S., Beard, J. L., Fine, R. E., and Mufson, E. J. 1992. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease. J. Neurosci. Res. 31:327–335.

    PubMed  Google Scholar 

  20. Jellinger, K., Kienzl, E., Rumpelmair, G., Riederer, P., Stachelberger, H., Ben-Shachar, D., and Youdim, M. B. H. 1992. Iron-melanin complex in substantia nigra of Parkinsonian brains: an X-ray microanalysis. J. Neurochem. 59:1168–1171.

    PubMed  Google Scholar 

  21. Jellinger, K., Paulus, W., Grundke-Iqbal, I., Riederer, P. and Youdim, M. B. H. 1990. Brain iron and ferritin in Parkinson's and Alzheimer's diseases. J. Neural Transm. [P-D Sect] 2:327–340.

    Google Scholar 

  22. Betz, A. L. 1985. Identification of hypoxanthine transport and xanthine oxidase activity in brain capillaries. J. Neurochem. 44:574–579.

    PubMed  Google Scholar 

  23. Kanemitsu, H., Tamura, A., Kirino, T., Karasawa, S., Sano, K., Iwamoto, T., Yoshiura, M., and Iriyama, K. 1988. Xanthine and uric acid levels in rat brain following focal ischemia. J. Neurochem. 51:1882–1885.

    PubMed  Google Scholar 

  24. Beckman, J. S., Marshall, P. A., and Freeman, B. A. 1987. Xanthine dehydrogenase to oxidase conversion in ischemic gerbil brain. Fed. Proc. 46:417.

    Google Scholar 

  25. Ciuffi, M., Gentilini, G., Franchi-Micheli, S., and Zilletti, L. 1991. Lipid peroxidation induced “in vivo” by iron-carbohydrate complex in the rat brain cortex. Neurochem. Res. 16:43–49.

    Google Scholar 

  26. Draper, H. H., and Hadley, M. 1990. Malondialdehyde determination as index of lipid peroxidation. Meth. Enzymol. 186:421–431.

    PubMed  Google Scholar 

  27. Valenzuela, A. 1991. The biological significance of malondialdehyde determination in the assessment of tissue oxidative stress. Life Sci. 48:301–309.

    PubMed  Google Scholar 

  28. Ceconi, C. 1992. Reply to the letter by G. A. Fantini and T. Yoshioka: Use and Limitations of Thiobarbituric Acid Reaction to Detect Lipid Peroxidation. Am. J. Physiol. 263 (No. 3, Pt. 2):H982-H983.

    Google Scholar 

  29. Csallany, A. S., Guan, M. D., Manwaring, J. D., and Addis, P. B. 1984. Free malonaldehyde determination in tissues by highperformance liquid chromatography. Anal. Biochem. 142:277–283.

    PubMed  Google Scholar 

  30. Esterbauer, H., Lang, J., Zadravec, S., and Slater, T. F. 1984. Detection of malonaldehyde by high performance liquid chromatography. Meth. Enzymol. 105:319–328.

    PubMed  Google Scholar 

  31. Mizuno, Y., and Ohta, K. 1986. Regional distributions of thiobarbituric acid-reactive products, activities of enzymes regulating the metabolism of oxygen free radicals, and some of the related enzymes in adult and aged rat brains. J. Neurochem. 46:1344–1352.

    PubMed  Google Scholar 

  32. Calabrese, V., and Fariello, R. G. 1988. Regional distribution of malonaldehyde in mouse brain. Biochem. Pharmacol. 37:2287–2288.

    Google Scholar 

  33. Haberland, A., Schutz, A-K., and Schimke, I. 1992. The influence of lipid peroxidation products (malondialdehyde, 4-hydroxynonenal) on xanthine oxidoreductase prepared from rat liver. Biochem. Pharmacol. 43:2117–2120.

    PubMed  Google Scholar 

  34. Radi, R., Tan, S., Prodanov, E., Evans R. A., and Parks, D. A. 1992. Inhibition of xanthine oxidase by uric acid and its influence on superoxide radical production. Biochem. Biophys. Acta 1122:178–182.

    PubMed  Google Scholar 

  35. Terada, L. S., Leff, J. A., Guidot, D. M., Willingham, I. R. and Repine, J. E. 1991. Inactivation of xanthine oxidase by hydrogen peroxide involves site-directed hydroxyl radical formation. Free Rad. Biol. Med. 10:61–68.

    PubMed  Google Scholar 

  36. Braughler, J. M., Pregenzer, J. F., Chase, R. L., Duncan, L. A., Jacobsen, E. J., and McCall, J. M. 1987. Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation. J. Biol. Chem. 262:10438–10440.

    PubMed  Google Scholar 

  37. Parks, D. A., and Granger, D. N. 1986. Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol. Scand. Suppl. 548:87–99.

    Google Scholar 

  38. Moorhouse, P. C., Grootveld, M., Halliwell, B., Quinlan, J. G., and Gutteridge, J. M. C. 1987. Allopurinol and oxypurinol are hydroxyl radical scavengers, FEBS Lett. 213:23–28.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cini, M., Fariello, R.G., Bianchetti, A. et al. Studies on lipid peroxidation in the rat brain. Neurochem Res 19, 283–288 (1994). https://doi.org/10.1007/BF00971576

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971576

Key Words

Navigation