Siberian Mathematical Journal

, Volume 24, Issue 3, pp 485–492 | Cite as

Coefficient estimates for bounded univalent functions

  • V. G. Cherednichenko
Article
  • 17 Downloads

Keywords

Univalent Function Coefficient Estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    C. H. Fitzgerald, “Quadratic inequalities and coefficient estimates for schlicht functions,” Arch. Ration. Mech. Anal.,46, No. 5, 356–368 (1972).Google Scholar
  2. 2.
    A. Z. Grinshpan, “The sharpening of the estimate of the difference of the moduli of adjacent coefficients of univalent functions,” in: P. P. Belinskii (ed.), Some Problems in Modern Function Theory [in Russian], Proceedings of the Conference on Modern Problems of the Geometric Theory of Functions Held at the Mathematics Institute, Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1976), pp. 41–54.Google Scholar
  3. 3.
    D. Horowitz, “A further refinement for coefficient estimates of univalent functions,” Proc. Am. Math. Soc.,71, No. 2, 217–221 (1978).Google Scholar
  4. 4.
    I. A. Aleksandrov, Parametric Continuation in the Theory of Univalent Functions [in Russian], Nauka, Moscow (1976).Google Scholar
  5. 5.
    I. M. Milin, Univalent Functions and Orthonormal Systems [in Russian], Nauka, Moscow (1971).Google Scholar
  6. 6.
    N. A. Lebedev, The Area Principle in the Theory of Univalent Functions [in Russian], Nauka, Moscow (1975).Google Scholar
  7. 7.
    Yang-Chung-Chun, “On the coefficients of a bounded univalent analytic function,” Proc. Indian Acad. Sci. A,82, No. 2, 37–40 (1975).Google Scholar
  8. 8.
    G. Ehrig, “Coefficient estimates concerning the Bieberbach conjecture,” Math. Z.,140, No. 2, 111–126 (1974).Google Scholar
  9. 9.
    L. P. Ilina and Z. D. Kolomoitseva, “On the estimation of |c4| in dependence on |c2| in the class X,” Vestn. Leningr. Univ., No. 1, 27–30 (1974).Google Scholar
  10. 10.
    D. Horowitz, “Coefficient estimates for univalent polynomials,” J. D'Analyse Math.,31, 112–124 (1977).Google Scholar
  11. 11.
    V. G. Cherednichenko, “An iterative method for the refinement of the necessary conditions for the univalence of polynomials,” Sib. Mat. Zh.,23, No. 2, 150–156 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. G. Cherednichenko

There are no affiliations available

Personalised recommendations