Lithuanian Mathematical Journal

, Volume 32, Issue 3, pp 334–341 | Cite as

Probability inequalities for sums of weakly dependent random variables

  • J. Sunklodas
Article
  • 70 Downloads

Keywords

Dependent Random Variable Probability Inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bennett, Probability inequalities for sums of independent random variables,J. Amer. Statist. Assoc.,57, 33–45 (1962).Google Scholar
  2. 2.
    G. Bennett, On the probability of large deviation for the expectation for sums of bounded independent random variables,Biometrika,50, 528–535 (1963).Google Scholar
  3. 3.
    S. N. Bernstein,Probability Theory [in Russian], Gostekhizdat, Moscow (1946).Google Scholar
  4. 4.
    P. Billingsley,Convergence of Probability Measures, Wiley, New York (1968).Google Scholar
  5. 5.
    J. R. Blum, D. L. Hanson, and L. H. Koopmans, On the strong law of large numbers for a class of stochastic processes,Z. Wahrsch. verw. Geb.,2, 1–11 (1963).Google Scholar
  6. 6.
    D. Bosq, Inégalité de Bernstein pour les processus stationaires et mélangeants. Applications,C.R. Acad. Sc. Paris,281, Série A, 1095–1098 (1975).Google Scholar
  7. 7.
    M. Carbon, Inégalité de Bernstein pour les processus fortement mélangeants, non nécessairement stationnaires. Applications,C. R. Acad. Sc. Paris,297, Série 1, 303–306 (1983).Google Scholar
  8. 8.
    G. Collomb, Propriétés de convergence presque complète du prédicteur à noyau,Z. Wahrsch. verw. Geb.,66 441–460 (1984).Google Scholar
  9. 9.
    Yu. A. Davydov, Convergence of distributions generated by stationary stochastic processes,Teoria veroyatn. Primen.,13, 730–737 (1968).Google Scholar
  10. 10.
    D. H. Fuk and S. V. Nagaev, Probability inequalities for sums of independent random variables,Teoria Veroyatn. Primen.,16, 660–675 (1971).Google Scholar
  11. 11.
    Ch. Hipp, Convergence rates of the strong law for stationary mixing sequences,Z. Wahrsch. verw. Geb.,49, 49–62 (1979).Google Scholar
  12. 12.
    W. Hoeffding, Probability inequalities for sums of bounded random variables,J. Amer. Statist. Assoc. 58, 13–30 (1963).Google Scholar
  13. 13.
    I. A. Ibragimov, Some limit theorems for stationary processes,Teoria Veroyatn. Primen.,7, 361–392 (1962)Google Scholar
  14. 14.
    I. A. Ibragimov and Yu. V. Linnik,Independent and Stationary Connected Variables [in Russian], Nauka, Moscow (1965).Google Scholar
  15. 15.
    V. V. Petrov,Limit Theorems for Sums of Independent Random Variables [in Russian], Nauka, Moscow (1987).Google Scholar
  16. 16.
    W. Philipp, The central limit problem for mixing sequences of random variables,Z. Wahrsch. verw. Geb.,12, 155–171 (1969).Google Scholar
  17. 17.
    M. Rosenblatt, A central limit theorem and a strong mixing condition,Proc. Natl. Acad. Sci. USA,42, 43–47 (1956).Google Scholar
  18. 18.
    G. G. Roussas and D. Ioannides, Probability bounds for sums in triangular arrays of random variables under mixing conditions, Statist. Theory and Data Analysis II, K. Matusita (ed),Elsevier Science Publishers B. V., North-Holland (1988), pp. 293–308.Google Scholar
  19. 19.
    Sh. Sharahmetov, Probabilities of moderate deviations and probability inequalities for sums of weakly dependent random variables,Dokl. Akad. Nauk UzSSR,2 5–7 (1981).Google Scholar
  20. 20.
    J. Sunklodas, Some estimates for the distributions of sums of weakly dependent random variablesLith. Math. J.,18, 144–147 (1978).Google Scholar
  21. 21.
    S. A. Utev, Inequalities for sums of weakly dependent random variables and estimates of the convergence rate in the invariance principle, in:Limit Theorems for Sums of Random Variables [in Russian], Nauka, Novosibirsk (1984), pp. 50–77.Google Scholar
  22. 22.
    K. Yoshihara, Probability inequalities for sums of absolutely regular processes and their applications,Z. Wahrsch. verw. Geb.,43, 319–329 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • J. Sunklodas

There are no affiliations available

Personalised recommendations