Lithuanian Mathematical Journal

, Volume 32, Issue 3, pp 327–333 | Cite as

Cramér-Rao bound for the estimates of frequencies and damping factors of quasipolynomials in noise

  • V. Slivinskas
  • M. Radavičius
  • V. Šimonytė


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Prony, Essai experimental et analytique, etc.,J. l'Ecole Polytech. 1, 24–76 (1795).Google Scholar
  2. 2.
    V. F. Pisarenko, The retrieval of harmonics from a covariance function,Geophys. J. Roy. Astr. Soc.,33, 347–366 (1973).Google Scholar
  3. 3.
    B. Porat and B. Friedlander, Analysis of the asymptotic relative efficiency of the MUSIC algorithmIEEE Trans. Acoust., Speech, Signal Processing,36, 532–543 (1988).Google Scholar
  4. 4.
    R. Roy, A. Paulraj, and T. Kailath, ESPRIT — A subspace rotation approach to estimation of parameters of cissoids in noise,IEEE Trans. Acoust., Speech, Signal Processing,34, 1340–1342 (1986).Google Scholar
  5. 5.
    P. Stoica and T. Söderström, Statistical analysis of MUSIC and subspace rotation estimates of sinusoidal frequencies, IEEE Trans. Acoust., Speech, Signal Processing,39, 1837–1847 (1991).Google Scholar
  6. 6.
    T. Söderström and P. Stoica,System Identification, Prentice Hall, London (1989).Google Scholar
  7. 7.
    D. C. Rife and R. R. Boorstyn, Multiple tone parameter estimation from discrete-time observationsBell Syst. Tech. J.,55, 1389–1410 (1976).Google Scholar
  8. 8.
    P. Stoica and A. Nehorai, MUSIC, maximum likelihood and Cramér-Rao bound,IEEE Trans. Acoust. Speech., Signal Processing,37, 720–741 (1989).Google Scholar
  9. 9.
    R. Kumaresan and D. W. Tufts, Estimating the parameters of exponentially damped sinusoids and pole-zero modelling in noise,IEEE Trans. Acoust., Speech., Signal Processing,30, 833–840 (1982).Google Scholar
  10. 10.
    H. Clergeot, S. Tressens, and A. Quamri, Performance of high resolution frequencies estimation methods compared to the Cramér-Rao bounds,IEEE Trans. Acoust., Speech Signal Processing,37, 1703–1720 (1989).Google Scholar
  11. 11.
    W. M. Steedly and R. L. Moses, The Cramér-Rao bound for pole and amplitude estimates of damped exponential signals in noise, in:ICASSP'91 Proceedings, Vol. 5 (1991), pp. 3569–3572.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. Slivinskas
  • M. Radavičius
  • V. Šimonytė

There are no affiliations available

Personalised recommendations