Siberian Mathematical Journal

, Volume 23, Issue 1, pp 33–36 | Cite as

Norming subspaces, biorthogonal systems, and preconjugate banach spaces

  • B. V. Godun
  • M. I. Kadets


Biorthogonal System Norming Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. Singer, “Weak *-bases in conjugate Banach spaces. II,” Rev. Rom. Math. Pure Appl.,8, No. 4, 575–585 (1963).Google Scholar
  2. 2.
    W. J. Davis, D. W. Dean, and B. L. Lin, “Bibasic sequences and norming basic sequences,” Trans. Am. Math. Soc.,176, No. 2, 89–102 (1973).Google Scholar
  3. 3.
    D. van Dulst and I. Singer, “On Kadec-Klee norms on Banach spaces,” Stud. Math.,54, No. 1, 205–211 (1975).Google Scholar
  4. 4.
    A. Pelczynski, “All separable Banach spaces admit for any ε>0 fundamental total and bounded by 1+ε biorthogonal sequences,” Stud. Math.,55, No. 3, 295–304 (1976).Google Scholar
  5. 5.
    I. Singer, “On biorthogonal systems and total sequences of functionals. II,” Math. Ann.,201, 1–8 (1973).Google Scholar
  6. 6.
    A. Grotendieck, “Une caracterisation vectorible-metrique des espaces L1,” Can. J. Math.,7, No. 4, 552–561 (1955).Google Scholar
  7. 7.
    T. Ito, “On Banach spaces with unique isometric preduals,” Michigan Math. J.,24, No. 3, 321–324 (1977).Google Scholar
  8. 8.
    L. Browh and T. Ito, “Classes of Banach spaces with unique isometric preduals,” Pac. J. Math.,90, No. 2, 261–283 (1980).Google Scholar
  9. 9.
    C. Bessaga and A. Pelczynski, “Space of continuous functions. IV,” Stud. Math.,19, No. 2, 53–60 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • B. V. Godun
  • M. I. Kadets

There are no affiliations available

Personalised recommendations