Siberian Mathematical Journal

, Volume 34, Issue 5, pp 972–983 | Cite as

Extremal boundary value problems of the dynamics of a viscous incompressible fluid

  • A. Yu. Chebotarëv


Viscous Incompressible Fluid Incompressible Fluid Extremal Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-L. Lions, Some Methods for Solving Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).Google Scholar
  2. 2.
    O. A. Ladyzhenskaya, Mathematical Problems of the Dynamics of a Viscous Incompressible Fluid [in Russian], Nauka, Moscow (1970).Google Scholar
  3. 3.
    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis [Russian translation], Mir, Moscow (1981).Google Scholar
  4. 4.
    C. Foias and R. Temam, “Structure of the set of stationary solution of the Navier-Stokes equations,” Comm. Pure Appl. Math.,30, No. 2, 149–164 (1977).Google Scholar
  5. 5.
    A. Yu. Chebotarëv, Stationary Inequalities for the Navier-Stokes Operator and Subdifferential Boundary Conditions [in Russian], [Preprint], Akad. Nauk SSSR, Dal'nevostochn. Otdel., Inst. Prikl. Mat., Vladivostok (1991).Google Scholar
  6. 6.
    J. L. Lions, Control of Singular Distributed Systems [Russian translation], Nauka, Moscow (1987).Google Scholar
  7. 7.
    A. V. Fursikov, “Control problems and theorems related to unique solvability of a mixed boundary value problem for the three-dimensional Navier-Stokes and Euler equations,” Mat. Sb.,115, No. 2, 281–306 (1981).Google Scholar
  8. 8.
    A. V. Fursikov, “Properties of solutions to some extremal problems related to the Navier-Stokes system,” Mat. Sb.,118, No. 3, 323–349 (1982).Google Scholar
  9. 9.
    A. Yu. Chebotarëv, “Optimal control in a flow problem for the equation of an ideal fluid,” Dinamika Sploshn. Sredy (Novosibirsk),81, 138–150 (1987).Google Scholar
  10. 10.
    A. Yu. Chebotarëv, “Optimal control of the Stokes system with one-sided restrictions,” in: Mathematical Physics and Mathematical Modelling in Ecology [in Russian], Akad. Nauk SSSR, Dal'nevostochn. Otdel., Inst. Prikl. Mat., Vladivostok, 1990, pp. 69–85.Google Scholar
  11. 11.
    M. D. Gunzburger, L. Hoo, and T. P. Svobodny, “Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls,” Math. Comp.,57, No. 195, 123–151 (1991).Google Scholar
  12. 12.
    S. S. Sritharam, “Dynamic programming of Navier-Stokes equations,” Systems Control Lett.,16, No. 4, 299–307 (1991).Google Scholar
  13. 13.
    O. Yu. Èmmanuilov, “On certain optimal control problems related to the Navier-Stokes equations,” Trudy Sem. Petrovsk., No. 15, 108–127 (1991).Google Scholar
  14. 14.
    È. B. Bykhovskiî and N. V. Smirnov, “Orthogonal decomposition of the space of vector-functions square-summable on a given domain,” Trudy Mat. Inst. Steklov. Akad. Nauk SSSR, No. 59, 6–36 (1960).Google Scholar
  15. 15.
    S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary Problems in Mechanics of Nonhomogeneous Fluids [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  16. 16.
    S. G. Mikhlin, A Course of Mathematical Physics [in Russian], Nauka, Moscow (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Yu. Chebotarëv

There are no affiliations available

Personalised recommendations